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The Efficiency of the Cochrane-Orcutt Estimation
Procedure in Autocorrelated Regression Models

Seuck Heun Song! Myoungshic Jhun? and Byoung Cheol Jung?

ABSTRACT

In the linear regression model with an autocorrelated disturbances, the
Cochrane-Orcutt estimator (COE) is a well known alternative to the Gen-
eralized Least Squares estimator (GLSE). The efficiency of COE has been
studied empirically in a Monte Carlo study when the unknown parameters
are estimated by maximum likelihood method. In this paper, it is theo-
retically proved that the COFE is shown to be inferior to the GLSE. The
comparisons are based on the difference of corresponding information ma-
trices or the ratio of their determinants.
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1. INTRODUCTION

For the linear regression model with autocorrelated disturbances, a variety of
estimators for regression coefficients have been proposed in the literature (Judge
et al. (1985) and Greene (1997)). One of most commonly used estimator for this
situation is the Cochrane-Orcutt estimator (COE) as a well known alternative to
Generalized Least Squares estimator (GLSE) due to its intuitive and computa-
tional simplicity. However, in the first-order autoregressive (AR(1)) case, several
authors including Kadiyala (1968), Maeshiro (1979), Kramer (1982), Oxley and
Robert (1983), Puterman (1988) and Stemann and Trenkler (1993) have studied
the effect of omitting the first transformed observation and they have pointed
out that the efficiency of COF can be very adversely affected if the sample is
relatively small. On the other hand, Hoque (1989) has found that the COFE can
be more efficient than the Ordinary Least Squares estimator.
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Beach and MacKinnon (1978a) developed an iterative Maximum Likelihood
Estimation (M LE) procedure for linear regression model with AR(1) distur-
bances, and they achieved Monte Carlo results which suggest that their M LE-
procedure yields substantially more efficient estimator than CO-procedure. Beach
and MacKinnon (1978b) extended the above approach to models which have a
second-order autoregressive, AR(2), disturbances. Such models are often encoun-
tered in practice when dynamics of model behaviour are of some concern, as for
example in Bruce (1975). The efficiency of COFE has been previously demon-
strated empirically in a Monte Carlo study. It does not appear to be known that
the COE is inferior to the GLSFE theoretically. In this paper we will show that
the COF is shown to be inferior to the GLSE in terms of the information matrix
criterion when the unknown parameters are estimated by maximum likelihood
method.

This paper is organized as follows; In section 2, we consider a linear regression
model with second order autoregressive scheme and define the transformation ma-
trices for weighted least squares estimators and covariance matrices of estimators.
In section 3, we present the likelihood function and investigate the efficiency of
COEF relative to GLSE in terms of the difference of corresponding information
matrices or the ratio of their determinants.

2. MODEL AND ESTIMATORS

We consider the linear regression model
y=XB+u, (2.1)

where y is T x 1 vector of observations on the dependent variable, X isa T' x k
matrix of observations on the independent variables (non-stochastic, of rank k <
T) and the k x 1 vector 3 is contained the unknown regression coeflicients to be
estimated. u is a T x 1 vector of unobservable disturbances with E(u) = 0.

The disturbances are assumed to follow a second-order autoregressive process

Uy = 91ut_1 + ngt_g + €, t= 1, 2, ce ,T, (22)

where E(e;) =0, E(es €5) = 0 for t # s, and E(e?) = o2. This process will be
stationary if 61 + 03 < 1,02 — 6; <1 and -1 < 8 < 1. Under these assumptions
the elements of the covariance matrix E(uu') = o2V can be found from the
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variance
2 (1-6) ‘752
= 2.3
= T (= 6)7 6D (23)
and the autocorrelation coefficients
0
A
p2 = G2+ -6, (2.5)
ps = B1pg_1+ 62p3_2, s> 2 (26)
The inverse of V' is given by
Fo1 —61 -8y 0 0 7
-0 1+ 9% ~61 + 616, 0 0
—~02 —91 -+ 0102 1+ 9% + 0% 0 0
vl = 0 —0, —61 + 6105 --- 0 0 , (2.7)
0 0 0 e 1462 -6,
| O 0 0 - 1 ]

a T'x T matrix such that V! = R{ Ry is given by (see Lempers and Kloek (1973))

Oc/0u 0 0 -+ 0 0]
—p1/1-0% J/1-62 0 0 0
) -6 1 -+ 0 O
Ry = 0 -6y -8 0 0], (2.8)
0 0 o - 1
i 0 0 0 - =6 1]
Oc (1+ 02)[(1 — 92)2 - 012] 1/2
where p { -4, } .

When 6; and 6, are known the GLSE f# = (X'V'X)'X'V~1y can be
obtained as the least squares estimator in the transformed model

y'=X"B+u, (2.9)

where y* = Ryy, X* = B; X and v* = Rju.
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The covariance matrix of GLSE is given by
Cov(B) = o2(X'RiR1 X) 7. (2.10)

As in the AR(1) case, let R; be the (T — 2) x T matrix obtained from R; by
deleting its first two top rows. Cochrane and Orcutt (1949) suggested the model

= X8 +ut, (2.11)

where y* = Roy, X+ = Ry X and vt = Ryu which amounts to dropping the first
and second observations from the transformed model in (2.9). Their approximate
GLSE then is given by

Beo = (X'RyR2X) ™" X' Ry Roy (2.12)
with following dispersion matrix
Cov(Beo) = o2 (X' RyRe X)L, (2.13)

Since § = (X'R} R, X) "' X'R} Ryy is the best linear unbiased estimator (BLU
E) of B, the GLSE is a better estimator than the COF when the parameters
6,,05 are known.

However, both estimators heavily depend on the unknown parameters 6; and
65. Under the assumption of normality we may consider maximum likelihood
estimation of the unknown parameters which will be done in the following section.

3. MAXIMUM LIKELIHOOD ESTIMATION

Assume that in the transformed model in (2.9) the disturbances obey u* ~
N(0,0%Ir). Then the loglikelihood function is equal to (cf. Judge et al., 1985, p
297)

T T 1
Ly(B,61,02,00) = — 5log27r - ~2—log02 + —log{ (1+62)%[(1 — 6,)% - 9%]}

2
_ 212{" u? + (1 — 62)u -i-Zu 21, (3.1)

T

where u22 (ug — prup)? and Zut = Z ~ Brus_y — Bauy_o)2
t=3
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Ignoring the first and second transformed observations we may alternatively
look at the model y© = X+3 + u™, where ut = Ryu ~ N(0,02Ir_5). In this
case the loglikelihood function is

-2

T
T-2
Ly(B,01,09,02%) = - log2mw — logo? — 557 Z : (3.2)
9 =3
The information matrix about the paremeter vector ¢ = (8,61,62,0%)' con-
tained in the preceding estimation procedures is characterized by the following

information matrices

271 . 2
IJ_____Ei:a L](ﬁ701792’06)}, J

o =1,2. (3.3)

The inverse of the information matrices provides a lower bound for the sam-
pling precision of the maximum likelihood estimators in model y* = X*8 + u*
and y© = X8+ u™, respectively.

In the following we show that the CO-procedure is inferior to the method
that incorporates the first and second transformed observations. Only in Beach
and MacKinnon (1978b) comparable simulation study results were presented. In
their papers they developed an iterative M LE procedure for the model (2.1) and
suggested the M LE-procedure yields substantially more efficient estimators than
CO-procedure through a Monte Carlo study. Our theoretical investigations con-
firm their findings.

Theorem 3.1. The difference I; — Iy of information matrics is n.n.d. for all
value of .

Proof: Since Ly := L(B,01,62,02) is obtained from the joint density f(y1,- -,
yr), whereas Ly := Lo(83, 61,02, 02) is based on the conditional density f(ys,--- ,
ylel, y2) it follows that
Li—Ly= — log2w — loga? +log(1 + 65) + —log{(l — 92 _ 01}
1 a? 2 2y, %2
T % 2{ 5“1""( — 03)u; }

1
= - l0927r —logo? + log(1 + 63) + —log{(l —05)? — 6%}

— 02)(u? + ud) — 201 (1 + 62)usua }. (3.4)
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As a matter of straightforward calculations we obtain

8 (L1 - Ly) 1 (ol 2
o gg{éulx’l + (1 = 63)(u2 — pru1)(z2 — lel)'}
3 (L1 ~ Ly) 3 61 (14 62)uiug
96, (1-6,)2-62 o?
& (L1 - La) 1 1-6, 1 s 9
50, AT ARG A
8 (L, ~ Lo) 1 1 Ny2 2
——85-?——— —;?4-27‘?{(1—92)('“1 +'U:2) —291(1-}-02)’&1'&2}

Then the derivatives of second order are

0% (L1-L 1 03
_—%ﬁ%ﬁl_z—) ‘53{;5351%'1 + (1 = 63)(w2 - pr31) (22 — P1$1)I}
£ u
9 (I = La) (-6 + 63
06t {(1-6)2 - 67}2
8% (L1 — Ly) 1 (1- 62)2 + 9% 1, ,
—_59_%—_ T(1+6)2 {(1 - 6,)2 — 62)2 + a—g(ul + u3)
0 (L - L 11
—fﬁlﬂ_ﬁi) ot ~ g—e{(l — 03)(ud + uB) ~ 201 (1 + BoJurr |
€ s 5
0% (L - L 1
e = oa{( - st waeh) = (14 )t + e}
€ €
0 (Ih-L 1
'_%ﬁl_afﬁﬁ ’_g{(l +62)(unzh +ural) }
9 (L1 -L 1
‘_%ﬁ%j—) _7{202(“1”3/1 +upzh) + 61 (u1z5 + U2£EI1)}
£
9 (In = La) 146
60'3801 a;l 142
0% (Ly — La) 1 ) ,
oot = ol fad )+ O
9 (L1 — La) 26, (1 — 62)
W - {(1 _ 92)2 _ 9%}2 + 0’3 uljl:Lz.

After taking expectations we get the following expression for the difference of

the information matrices.

(3.5)

h-I=-F [——————82@1 — L2):|

oY oy’
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IB) 0 0 O
0 A B C
| o BDEY| (3.6)
0 C E F
(L~ L 1 (o2
where I(8) = —E[———(a—g—éﬂl—ﬂ-] = 0—2{%:61:5'1+(1~0§)($2—p1x1)($2—p1$1)’}
and £
0%(Ly — Ly) 1
4 = _E[ d(0?)2 T o
O*(Ly — Ly) 61
B = o) - e
C = _E[82(L1 — L2) _ 202(1 — 02) + 012
0(02)90, o2(1 +62){(1 - 65)2 ~ 67}
62([11 - L2)’ (1 — 92)2 + 9%
D = -E =
[ 06} {(1-6,)? — 63}
E = _E{62(L1 — Lo) _ 201(1-—0‘%) -—91{(1—92)2—0%}
- 06,86, (14 62){(1 - 65)% ~ 62}2
P _E[BZ(Ll - Lz)] B {[(1 —602)% — 622 + (1 + 62)%[(1 — 62) + e%]}
= - T+ 0201~ 05)7 - 62F
—9(1 — 62)\[(1 — §,)2 — g2
W EEL I AT
1+ 92)2[(1 - 92)2 - 91]2
I(B) is n.n.d. and the 3 x 3 matrix in the southeast corner of I} — Iy,

I(02,61,6,), is easily seen to be n.n.d., because det{I(c?,6;,62)} = 0 and di-
agonal elements of I(02,6;,6,) are also positive, where det(.) denotes the deter-
minant of a matrix. Therefore, the difference of the information matrices is n.n.d.

for all %.

]

Remark 3.1: In the AR(1) case, we get the following expression for the differ-

ence of the information matrices:

[ 1-62 i
5 Lo} 0 0
gz 9 0
20 .

LI = 1 ,
1o " -7 -
61 1
0 - —
L o2(1 - 63) 208 ]

which is also easily seen to be n.n.d. It is a theoretical proof of empirical foundings

of Beach and MacKinnon (1978a).
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Another measure relating the content of information in two estimation meth-
ods is given by

et(Iz)

Eff(¢) = det(l,)’ (3.7)

In the following theorem we will show that Eff(¢) is always smaller than
one, but for T' — oo this measure converges to its upper bound, provided some
sufficient conditions are satisfied.

Theorem 3.2.

i) Eff($) <1 for all 9. (3.8)
it) If lim lX 'RLbR,X = @ and @ is positive definite,
Tooo T

then Tll)r{:o Eff(y) =1.
Proof: i) By a similar reasoning which led to (3.6) it follows that

det(I;) = (62)~*+3) det(X' R} R1 X) det(IgLs) (3.9)
and

det(Iy) = (62)~%+3) det(X'Ry Ry X) det(Ico) (3.10)

which gives

1 det(X'R, R, X) - det(IgLs)

(Eff()] " = det(X'RyR, X ) - det(Ico) '

where Ico and Igps are 3 x 3 matrices in the south east corner of I, and I,
respectively.

det(IgLs) _
Therefore, Zeiloo)
L [l-6 _ 2(1-6)) 2(1 + 63)

Observe that Eff(¢) does not depend on 8 and o2.
Using the following relation

2
X'RIR1 X = X'RyRo X + %a:w:'l + (1 = 63) (29 — pr21) (22 — p171)’,

Oy
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we obtain
det(X'R1R1 X)
o
= det [X ROR X + —= mlzl]
o2
. {1 + (1 - 9%)(372 - pl.’1:1) [X R2R2X + 21‘1.'121] 1(1‘2 - plml)}
2 u
- det(X'R'QRgX){l —xl(X’RzRgX) xl}
o2
{1 + (1 - 63)(z — p171)' [X'RAR2 X + 2:1:1:1:1] 1(:z2 —'plml)}.
Therefore
[EffI

16, 2(1 — 62) 2(1 + 62)
{1 g [1 10 (1 —92)22_933] + (T — 2)2[(1 -922)2 _931}
{1+ § (X'ByRyX) " 21 }
{1 + .’122 - pliL‘l) [X RszX + 371:171] 1(.’1:2 — plml)}.(3.12)

[Eff(¥)]~" is the product of three factors each of which larger than 1, and the
inequlity in (3.8) is established.

1
ii) If the lim TX 'RbR2X = Q, and Q is positive definite, the first factor of
—00
(3.12) converges to 1 if T' — oo. Also

lim {1+U ,} ’( X'RyRyX) ™! }:1.

T—o0
Thus
. 2 1 / 2 -1
lim {1 + (1 — 63)(z2 — pr121)’ f[_(X RyRx X + $1$1)] (2 — p1w1)} =1.

T o0 u

| =

a
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4. CONCLUSIONS

In the preceding chapter we analyze the relative efficiency of COE and GLSE
in terms of the information matrix criterion and the ratio of their determinants.
In this paper we have shown that the COEF is inferior to the GLSE when the
unknown parameters are estimated by maximum likelihcod method. It has been
also found that the COE has the same efficiency as the GLSE, as the sample
size increases. However, it must be pointed out that a significant loss in efficiency
may be incurred if the COEF is used in finite sample.
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