Journal of the Korean Statistical Society (1998), 27: 3, pp 305-318

Testing for Lack of Fit via the Generalized Neyman
Smooth Test

GeungHee Lee!

ABSTRACT

Smoothing tests based on an L» error between a truncated Fourier series
estimator and a true function have shown good powers for a wide class of
alternatives. These tests have the same form of the Neyman smooth test
whose performance depends on the selected order, a basis, the form of esti-
mators. We construct flexible data driven Neyman smooth tests by changing
a basis, combining model selection criteria and different series estimators.
A simulation study shows that the generalized Neyman smooth test with
the best basis provides good power for a wider class of alternatives com-
pared with other data driven Neyman smooth tests based on a fixed form
of estimator, a fixed basis and a fixed criterion.

Keywords: Lo error test; Model selection; Fourier series; Wavelets; Best basis

1. INTRODUCTION

Suppose that we have data yi, ... ,yn from the following model:
i—0.5 :
v = f( - )+ € i1=1,...,n, (1.1)

where €;,...€, are i.i.d. normal random variables with mean zero and finite
known variance o2 and f is a function defined on [0,1]. Having selected a model,
we should check the model for lack of fit. Under the model in (1.1), the lack-of-fit
hypothesis for the residuals y; can be expressed as follows:

Hy : f is constant vs. H, : f is not constant. (1.2)

A number of parametric tests can be used to detect specified departures from Hp.
We call these parametric tests directional tests. For a wider class of alternatives,
tests using the idea of nonparametric function estimation have been developed.
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If a possible alternative function f is smooth enough, the Fourier coefficients
decay quickly to zero as the frequency becomes high. In this case, the following
truncated series estimator, usually provides a reasonable estimate of f(z):

k
filz) = a0 +2) & cos(rjz), (1.3)
7=1

where a; = %{Zinzl cos(i‘g's)yi and k is a fixed constant. If f is a constant, an

L, error can be estimated by fol( filz; k) — Y)2dz, which becomes 222?:1 &? by
Parseval’s relation. Considering the variance of d;, we can obtain a standard
form for the Lo error, %’% E’;zl a%. The L, error between the truncated series

estimator and a constant has the same form as a Neyman smooth statistic,

k

2n R

T'Neyman = ;2‘ E a?. (1.4)
J=1

The performance of the test depends on the selected order & and the set of basis
functions used for estimating f.

If we choose the wrong k, however, the result is low power for Tyeyman. A
subjective choice of k often gives poor results. It is often difficult to detect
high order behavior subjectively, i.e., by eye. We need to find an objective and
data-adaptive rule to select an order k. The Neyman smooth test based on data-
adaptive k is called the data-driven Neyman smooth test. If our data comes
under Hp in (1.2), the order k is selected as zero because of the property of
data-driven criteria; otherwise, the order k is greater than zero. This order
selection based on data-driven criteria enlarges the alternative class. Adding the
order selection to the Neyman smooth test makes the test more powerful for a
broader class. Kuchibhatla and Hart (1996) and Ledwina (1994) construct data
driven Neyman smooth tests using the AIC(Akaike Information Criterion) and
BIC(Beysian Information Criterion) type automatic order selection criteria to
select k in fl, respectively. Since each criterion has its own merits and demerits,
it is desirable to choose a suitable model selection criterion.

To represent f in (1.1) efficiently, we have to choose the suitable basis instead
of the fixed basis. If the data have periodic behavior, sine and cosine series
estimators provide an efficient means of explaining the data. On the other hand,
Haar wavelets give a good expression for blocky data. By choosing the best basis,
we can improve the performance of Tneyman-

In this paper, we modify the data driven Neyman smooth test in order to
improve its performance for a wide class of alternatives using different bases, such
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as wavelets, and different criteria. By selecting the best basis and combining AIC
and BIC, we can generalize Neyman smooth tests which perform well for a wider
class of alternatives compared with other data driven Neyman smooth tests based
on a fixed basis or a fixed criterion.

To combine AIC, BIC and a threshold, we construct a general series estimator
and a new type of data driven Neyman smooth test in Section 2. In Section 3,
we apply a different basis - wavelets — to data driven Neyman smooth tests.
In Section 4, we improve the test by selecting the best basis from a library
that consists of several bases. We compare several Neyman smooth tests by the
simulation study in Section 5. Section 6 gives the conclusion.

2. DATA DRIVEN NEYMAN SMOOTH TEST WITH A
GENERAL SERIES ESTIMATOR

Often we are mainly interested in low frequency behavior such as a trend.
To check these low frequency departures, traditional nonparametric tests such
as the Kolmogorov Smirnov and Cramér-Von Mises tests may be used. These
tests suffer from poor performance for high frequency alternatives. Fan (1996)
points out these problems and suggests data driven Neyman smooth tests based
on a thresholded estimator. His tests perform well for a dominant frequency
alternative but have some restriction in detecting a low frequency alternative
with a moderate size. To solve this problem, Lee and Hart (1998) suggest a
hybrid test based on an Ly error which uses AIC criterion and a threshold.

It is always difficult to choose a suitable model selection criterion. When
we focus on AIC and BIC, AIC has good small sample properties but is not
consistent, whereas BIC is consistent but has a slow convergence rate. The orders
karc and kpre based on AIC and BIC are chosen as the maximzer of the following
criterion with C' = 2 and C = log n, respectively:

r(k) =

0 for k =0
{ ’ or 2.1)

K162 -Cko?, fork=0,1,...,n—1.

We can construct a more general estimator f using the consistency of BIC
and the tendency that AIC chooses an overfitted model as follows:

o ag + 22’%510 a;jcos(mjz) + 291 (x), if ];BIC > I;AIC
falw) = { Forc s (2:2)

ao + 2 Y82 a; cos(mjz) + 20a(z), if kprc < kaic,
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where §;(z) = Zn—limcﬂ a; I(lilﬁLl > 61) cos(mjz) and §o(z) = ZI;AE;ch a;

I(*—2;lng > 82) cos(mjz) + ZJ k,uc+1 ]I(Iﬂll—l > 61) cos(rmjz).

We use /(2 + 71) logn and /(2 + y2) log n as 61 and ds, respectively and ; and
~9 are positive constants such that y; > 2. Based on the Ly difference between
fg and a constant, a data driven Neyman smooth test statistic is constructed as
follows:

’EB’C&2+T if kpre > k
Ty = g’z[zk 1], i kpro 2 kare 23)
Zo20a 2+ Tg), ifkprc < karc,
where Tg; = Y.~ 1 *2I(|_3'ﬂ1_| > 6;) and T'gy = ZEAIC d2I(| 2;Léi| S

J= kBIC+1 -7 j=kprc+1 J
+Z] Charotl A? I(———J—I LTS 1). If we have the data with n > 8, karc > kprc
so that f2 and Ty can be expressed as the simpler form. If we choose 0 as kgic,

we set kgrc to 1. The limiting distribution and consistency of Tgy are given in
Theorems 2.1 and 2.2.

Theorem 2.1. Under the model (1.1) with a constant f and 61 = /(2 + 71) logn

= /(2 + v2)logn for positive finite constants vy and 72 such that y1 > 2,
the statistic Tgn in (2.8) converges in distribution to a x5 random variable as
n — 0.

Theorem 2.2. Suppose that f in (1.1) is such that, for some j, limp_, o Pr(la;| >
A) =1 for some A > 0. Then, the test of (1.2) based on Tgy is consistent.

These proofs are given in Appendix.

3. DATA DRIVEN NEYMAN SMOOTH TEST WITH
WAVELETS

If the underlying function contains nonsmooth local behavior, Fourier series
estimators have difficulty in explaining such behavior. To overcome this problem,
we may consider wavelets 41, an orthonormal basis analogous to bases used in
Fourier analysis and the following series estimator:

Jo—127-1 M-12/-1

Fa@) =eopd@) + > D distinl@) + D Y digti(@ ik, (3.1)

3=0 k=0 j=jo k=0
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. . 1 ,
where ¢ is the scaling function, M = logyn, Cop = ‘,,;Z?=1 yip(L), d

1 . i

— Y Yitik(y) and Ijg = I(‘—V/—ﬁ;dl'k—l > 4). In this vein, Fan (1996) proposes
data driven Neyman smooth tests based on wavelet thresholding with fixed jp as
follows:

Jo—127-1 M- - (i
=5 2} S d+ % Z kz l‘/z LIS 8x), (3.2)
j=0 k=0 F=j =0

where dy = /2logn/a,, and a, = (log,)?. The normalized tests of Ty are
distributed with standard normal distribution under the Hy in (1.2) (Fan, 1996,
Theorem 2.3).

His test cannot detect low frequency behavior well due to a fixed jp. To solve
this problem, it is desirable to use data adaptive jo. Lee (1997) chooses smoothing
parameters jp and a threshold § based on a risk estimator, simultaneously, which
estimators provide better fits than those with fixed jo. Considering wavelet series
estimators with a data adaptive jp, new data driven Neyman smooth tests are
constructed as follows:

1. Choose the order j Arc and j'B 7c that maximize the following criterion:

j 2i~1 o2
SZZJ;{,C—C;@J“ -1) forj=-1,0,...,M 1,
1=0 k=0

where we use C = 2 and C = logn for jasc and jpic, respectively and
r(-1) =0.

2. If jprc = —1, set 7B1c to 0. Based on the selected Jarc and JBIC, construct
a data driven Neyman smooth test as follows:

Twé _ {f [Z]Blc Yrd 2, +Twl, ifjprc> jaic (3.3)
ol [ZJBIC 221 s 32 +Twsq], if yB1c < Jarc,
_ M-l 21-1 % \/2'52 | _ \Jaic
where Twy = 3 . 1 2 k=0 d; kI( >61) and Twy = 3270

i N (CETS ARE D v-ar W (CLE )

In this paper, we consider Daubechie wavelets with reguarity p > 2 and Haar
wavelets. For properties of wavelet coefficients dj’k such as their asymptotic
normality, see Chapter 3 of Lee (1997). The limiting distribution and consistency
of Ty p are given in Theorems 3.1 and 3.2.
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Theorem 3.1. Under the assumptions of Theorem 2.1, the statistic Tywp in
(8.8) converges in distribution to a x? random variable as n — oo.

Theorem 3.2. Suppose that f in (1.1) is such that, for some j and k, lim,
Pr(]dj,k] > A) = 1 for some A > 0. Then, a test of (1.2) based on Twp is
consistent.

Using the same proof as for Theorem 2.1, the asymptotic distribution of this test
under Hy can also be derived as x?. Consistency of this test under H, can be
proved in the similar way to Theorem 2.2. Spokoniny (1996) proposes an adaptive
test using wavelets with an adaptive jp in the minimax sense.

4. GENERLIZED NEYMAN SMOOTH TEST WITH BEST
BASIS

Until now, we consider a fixed basis such as cosine series or Daubechies
wavelets with fixed regularity. In this section, we try to find the best basis from
the data instead of the fixed basis. To represent the data efficiently, we have to
choose the suitable basis. To give more flexibility to choose a best basis, we may
consider a library approach. A library of orthonormal bases can be defined as a
collection of orthonormal bases.

We assume that a library consists of L bases {£!,¢£2,.-- ,{L} where each
basis &% is an orthonormal basis such as Fourier series or Daubechies wavelets
with several regularities. Each basis £* has n-elements ¢¥ = {¢¥ ¢& ... ¢51. For
each &%, a data driven Neyman smooth test T can be constructed with the same
form as (6). This test is asymtotically distributed as a x3 random variable under
Hj in (2) and consistent under H, in (2).

Coifman and Majid (1993) propose a rule for selecting a single best basis
among bases in the library based on Shannon entropy which is the popular mea-
sure to evaluate the efficiency of bases in terms of data compression. Entropy
E(z) is given by

E(z) = sz log z;, for z; > 0 and Zmi =1.
i

The basis which minimizes Shannon entropy can represent the data efficiently
and is called the best basis. In the case of the cosine series, we calculate en-
tropy using z; = ——’——5 where @; = 71, Y1 Yi cos(7rJZ =0.5
approximated by ajgingle basis, this best basis based on entropy represents a

). If a function is well
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function efficiently; otherwise, the basis based on this selection has a restriction
in explaining a function. To overcome this problem, Chen and Donoho (1994)
suggest a new algorithm — Basis Pursuit. In this section, we focus on selecting
the single best basis based on entropy and assume that the underlying function
can be expressed as the truncated series form based on the selected basis. As the
number of bases increases, the probability of selecting a wrong basis increases.
Thus, it is necessary to restrict the number of bases as much as possible based on
a prior knowledge for the data. We can construct a data driven Neyman smooth
test Tpp using the best basis and the general series estimator f as follows:

1. Construct a library based on data.
2. Choose the best basis from the library based on entropy.

3. For the selected basis, a data driven Neyman smooth test statistic based
on fo (Tpp) is obtained.

We call this test the generalized data driven Neyman smooth test. Under Hp,
this test statistic has an asymptotically x? distribution regardless of bases, due to
BIC, while under H,, this test performs better than the test with fixed basis due
to the best basis selection algorithm. The limiting distribution and consistency
of Tgp are given in Theorems 4.1 and 4.2.

Theorem 4.1. Under the assumptions of Theorem 2.1, the statistic Tpp con-
verges in distribution to a x% random variable as n — oo.

Theorem 4.2. Suppose that f in (1.1) is such that lim, Pr(léﬂ > A) =1,
é;“ = %Z?:l f;“(%)y2 for some A > 0,k,j. Then, a test of (1.2) based on Tgp is
consistent.

These proofs are given in Appendix.

5. SIMULATION STUDY

A simulation study was conducted to compare several data driven Neyman
smooth tests (Table 5.1). The data driven Neyman smooth test Tk g is proposed
by Kuchibhatla and Hart (1995). As thresholds for the other tests, we used
§i = /3logn and & = 2TIlogn. For Twp and Ty, we used Daubechies
wavelets with regularity 6. In the case of Ty, we used a fixed jo = 0 in fa
in (3.2). For Tpp, we constructed a library with three bases — Haar wavelets,
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Table 5.1: Structure of data driven Neyman smooth tests

Name Basis Criterion
Txg | Fourier AIC
Ten | Fourier | AIC, BIC and Threshold
Ty | Wavelets Threshold
Twp | Wavelets | AIC, BIC and Threshold
Tgp | Library | AIC, BIC and Threshold

Daubechies wavelets with regularity 6 and cosine series. To obtain the the critical
values of the tests, 10,000 sample sets with the sample size 128 were generated
from a standard normal distribution. Table 5.2 shows the empirical percentile of
5 data driven Neyman smooth tests.

Table 5.2: Empirical percentile of data driven Neyman smooth tests under Hy

Percentile T Ten Ty Twnr Tpp
99 30.357 | 17.016 | 82.181 | 16.544 | 18.732
(0.995) | (0.306) | (0.878) | (0.242) | (0.279)

98 22.645 | 14.842 | 76.820 | 13.932 | 16.528
(0.475) | (0.430) | (0.668) | (0.693) | (0.210)

97 19.285 | 12.029 | 73.381 8.144 | 15.176
(0.447) | (0.400) | (0.425) | (0.846) | (0.200)

96 16.712 9.753 | 70.667 5.973 | 12.716
(0.415) | (0.495) | (0.400) | (0.279) | (0.554)

95 14.863 7.563 | 68.800 5.069 | 10.740
(0.381) | (0.230) | (0.332) | (0.159) | (0.667)

90 9.002 4.118 | 62.432 3.169 4.173
(0.221) | (0.127) | (0.372) | (0.066) | (0.111)

75 2.693 1.606 | 52.235 1.481 1.603
(0.103) | (0.030) | (0.212) | (0.031) | (0.033)

Note: Standard errors are given in parentheses.

To compare the power of the five tests, we generated 1,000 samples from
the following 3 underlying functions with standard normal errors and different
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amplitudes:
eSz
flz) = (i -V (5.1)
f(z) = rcos(80mz) (5.2)
flz) = {0, ifxﬁ%%orx>%’§ (5.3)
r, if —152% <z< 1—52%

The results of the simulation study are shown in Figures 5.1.- 5.3. The range
of standard errors for empirical power is from 0.0 to 0.016. We took the Type
I error probability to be 0.05. Tgn performs better than Tk py for low, high
frequency data. For high frequency data, Tk g has low power due to the failure
of the order selection by AIC. Ty g is superior to T due to a data adaptive jp for
low frequency data. For the spike data, Ty g and T work better than data driven
Neyman smooth tests based on Fourier series (Tk g and Tgn), because wavelets
better detect local behavior. For low, or high frequency data, Tgn is better
than Twp since these functions are well approximated by Fourier series. The
performance of Ty and Tywp depends on the alternative function, while Tpp
has stable power for all alternatives, because the best basis algorithm chooses
a basis properly. Since the best basis algorithm selects Haar wavelets for the
spike data, Tgp is superior to the other tests. When the variance o? in (1) is
unknown, we can use the consistent variance estimator based on the difference for
a continuous function f (Rice, 1984; Hall, Kay and Titterington, 1990). For the
test with wavelets, robust variance estimators of Donoho and Johnstone (1994)
can be considered.

6. CONCLUSION

In this paper, we generalized data driven Neyman smooth tests to obtain good
power for a broad class of alternatives. Data driven Neyman smooth tests depend
on 3 components — the selected smoothing parameters, the type of the estimator
and the selected basis. We proposed several data driven Neyman smooth tests
by combining the model selection criterion, the form of estimators and the best
basis, The simulation study showed that the generalized data driven Neyman
smooth test performed well for a broader class of alternatives than other data
driven Neyman smooth tests. The proposed tests would be extended via better
best basis algorithms and model selection criteria.
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Figure 5.2: Empirical power of 5 tests for f = r cos(80mz)
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APPENDIX

Proof of Theorem 2.1. To prove Theorem 2.1, we need the following lemmas
A.1 and A.2 which come from Hart (1997) and Fan (1996), respectively. The
data driven Neyman smooth test based on BIC, Ty is given by

kpic »2 i i

Ty, = {«% mca; ifkpre>1
247 if kprc = 0.

Lemma A.l. Under the model (1.1) with a constant f, the statistic T} con-

verges in distribution to a x? random variable as n — co.

Lemma A.2. Assume that X is normally distributed with mean zero and vari-
ance one. Let § be a chosen threshold and Y = X2?I(|X| > §). Then

BY* = \/2/m6* 1 4 (2k — 1) 2 + O(674)} exp(—62/2).
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When § = /(2 + v) logn for a positive finite constant v, EY = O(6 exp(—62/2))
—~0 (\/logn

nlF2)

Take 0?> = 1 without loss of generality. Tgny can be expressed as the sum
of T;, and Tg; or Tgy, where Tg, = ZnZ;‘;}; a2I(v2nlaj| > d2) and

o+1 a;
Tgs = 2n 2’““0 a1 BI(V2nlas] > 82) + 2n 2;‘:’} a2I(v/2n|a;| > 61). The

c+1%
v2na;’s are z.z.d as Normal(0,1) under Hy. By Lemma A.1, T;, converges in

distribution to x3. By Markov’s Theorem and Lemma A.2, for any € > 0

P(To > < 249

2" | B(2na21(v2nla;] > 61))

n—1 \/logn
- O(n1+71/2)
\/ Viegn

= 6O n71/2 ) — 0.

IN

Similary, P(T'g; > €) — 0. Therefore, by Slutsky’s Theorem, TGy converges in
distribution to x3.

Proof of Theorem 2.2. For Theorem 2.2, we need the following Lemma A.3

whose proof is given in Hart (1997). a

Lemma A.3. Suppose that we have f in (1.1) such that for some j, lim, o0
Pr(la;] > A) =1 for some A > 0. Then, Ty, is consistent.

The rejection region of a test based on Ty is asymptotically the same as that
of Ty, by Theorem 1. If C, is the asymtotic critical value, then

P(Tgn > Co) > P(Tp > C,) = 1

Thus, the power of Tgy tends to 1 as n — oo under any alternative satisfying
the assumptions of Theorem 2.2.

Proof of Theorem 4.1. Assume that a library consists of L bases and take
2 — 1 without loss of generality. Let E; = {¢!|Entropy(¢') < Entropy(¢?),
i # j}. Then Tpp can be expressed as follows:

L
Tpp =Y Tul(E
i=1
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where I is the indicator function. For any z > 0,
L L
P(Tpp <z) = Y P> Tul(E;) < z|Ey)P(Ey)
k=1 i=1

L
= Y P(Tu < 2)P(Ey)
k=1
Since the limiting distribution of Tyx under Hp in (2) is x? for each k, Tpp
converges in distribution to a x? random variable.
Proof of Theorem 4.2. Assume that C, is the asymtotic critical value of Tpp.

L
P(Tsp > Ca) = Y P Tal(E:) > ColEx)P(Ey)
=1

=T

P(Tp > Ca) P(Ey)

ax
1l
—

Since Tgk is consistent for all k, Tgp is also consistent under any alternative
satisfying the assumptions of Theorem 6. O
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