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Abstract

In this paper, we propose some jackknife estimators for mean in the exponential
model with grouped and censored data. Also, we compare the proposed jackknife
estimators to other approximate estimators in terms of the mean square error and
bias.

1. Introduction

The model used in this paper is based on exponential life-time distribution, where data are
grouped and censored at a specified time. In this case we have very poor information for

lifetime when sample size NN and number of inspection % are small. Here we consider three

computationally simpler estimation methods. The first method assume that failures occur at
interval center, the second method is based on a Taylor series expansion of the probability of
failure in each interval, and the last method is based on the first step iteration of the
Newton-Raphson procedure to solve the likelihood equation.

Kulldorff(1961) and Ehrenfeld(1962) considered the large sample properties of the maximum
likelihood estimator(MLE) for the grouped and censored exponential data. Kulldorff(1961)
showed that mid-point estimator is biased and not consistent. Nelson(1982) showed that
mid-point estimator could be useful for practical purpose if interval widths were small relative
to mean( ). Meeker(1986) considered three inspection schemes until censoring; equally spaced
in time, equally spaced in log time and equal probability. Seo and Yum(1993) reported some
Monte Carlo simulation results for three approximate estimators in exponential grouped and
censored data. They compared these approximate estimators to exact MLE in terms of mean
squared error(MSE) and bias.

The jackknife method is resampling method which was at first introduced by
Quenouille(1956) for the purpose of reducing bias. A review concerning this resampling plan is
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given in Miller(1974).

In this paper, we compare three approximate estimators for mean in the exponential model
to their jackknife estimators in terms of MSE and bias. In Section 2, we explain notations,
assumption of this model and three typed inspection scheme. And we introduce mid-point
estimator for grouped and censored exponential data and derive the jackknife estimator using
this estimator. In Section 3, we introduce the approximate estimators based on Taylor series
expansion and the Newton-Raphson method, respectively, and evaluate jackknife estimators
using these two approximate estimators. In Section 4, through the Monte Carlo simulation
study we compare three approximate estimators to the jackknife estimators using these

estimators in terms of MSE and bias.

2. Mid-Point Estimator

2.1 Notations and model

Let T, Ty ... ,Ty Dbe identically independent lifetimes with distribution fuction F,
and let 7;, ¢ = 1, 2, <+ , k, be the ith inspection time, where & is the number of
inspections;

g = 0, 7144 = ® and 7, = censoring time.
Then we define the probability p; that a test unit fails in (z;-, 7;], ¢ = 1, 2, -, k, as

pi = Prlr, (T<gz ],
and the probability p, that a test unit is censored, as
p. = Pr(T>r, ]
Let x;’s be the numbers of failures in each inspection interval (z;—; ¢;1, =1, 2, -, £&;

xp+1 = number of test units censored,

We have assumptions as follow;
(1) N units are available for life test at time 0.
(2) The lifetimes of test units are mutually independent and follow an exponential

distribution with p.d.f.
gy = L —t
At; 0) = 0exp( ; ) £0, 60.

{3) The life test is terminated at a specified time.

(4) ith inspection is conducted at z;, ¢=1, 2, -*-, k; the last inspection occurs at the
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censoring time 7.

For inspection times, we consider three schemes from Meeker(1986); in equally spaced(ES)

inspection scheme, 7, are defined as

in equal probability(EP) inspection scheme, these are defined as

_L&)}_) i=1, 2, -, k-1,

and in equally spaced inspection scheme of log time(ESL), these are defined as
i—1

r; = rl(—ri) i L, 1=2, 3, -, k-1,

31

where 17, is the same as in EP.

2.2 Mid—point estimation

When we know exact failure time, the MLE of @ is
LZ} i+ T/ex/eH)
9, = = ” . 7> 0,

where #;'s are the exactly jth failure time until z,, 7 = 1, 2, -=- , 7. However in

grouped data scheme, we can not obtain closed form of MLE. Hence we assume that x,;

. . . . T, + -
failures have occured at the mid-point of the interval m;, ;= Lizhll)
i1 =1, 2, - , k. Then we can obtain a mid-point estimator of & by using ML

procedure for continuous inspection as follows;

@ mx; + TiXk+ 1)
/90 = = y

90 can be useful for practical purposes if interval widths are small relative to 8. However

, 0,

@0 is biased and not consistent.
To obtain jackknife estimator using mid-point estimator we use the method proposed by

Quenouille(1956). Estimator gé can be obtained by deleting one obsevation from x;
observations in interval (z,-y; 7] , ¢ = 1, 2, -~ , k+1, and depends on whether the

deleted observation is censored or not censored. Hence the estimator §; is given as
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[ r£1 [ . m;x;-!-m(xz 1) +kak+1} i=1, 2, -~ , k
% 2.1

ir{lgmjxﬂ- T xps1— 1) i=k+1.

Then Quenouille’s method yields the pseudo jackknife
Jo= NB—(N-DG, i=1,2, = , ktl.
Each pseudo jackknife exists exactly x;, X3, ***, Xp+; times, respectively. Therefore the

jackknife estimator 70 using mid-point estmator is the arithmetic mean of the N pseudo

70 = jlv“ Exz‘ﬁ)-

It is obvious that if the number of inspection £ is small then only a few pseudo jackknife

exist. Note that both the mid-point estimator and the jackknife estimator using this estimator
are very sensitive to the probability of censoring when number of inspection is small.

jackknifes given by

3. Approximate Maximum Likelihood Estimators

For the grouped data, the corresponding likelihood is given by
-1
L = M (ﬁxv) -kljipf’

b = PI'(Z'Z'_l (T T[)

where

=exp(— T"ﬁ‘l)— exp(—%), i=1, 2, -, k41,

and log likelihood is

InL(6)=C+ ’Zx In(p,)

where C is constant with respect to 8. Then MLE of £ is obtained by solving the equation

a’lnL(H) ’Z dln(p) _0. 31

Equation (3.1) yields no closely formed solution for & except for an equally spaced inspection

scheme or a single inspection. Therefore we use two approximate MLE's to obtain closed
form of solution.
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3.1 Approximate estimation based on Taylor series expansion
Tallis(1967) considered an approximate MLE of & based on Taylor series expansion of the

probability of failure p;, ¢=1, 2, -+, k. He suggested the following approximation

am(p) _ d _ a4 (S (m6)
o~ gg om0+ 5 de( Roms; 6) )

where f is the p.df of lifetime 7T, f is the second derivative of £, and d;,=rt1,~1,_;.

=1, 2, -, k, (3.2)

By inserting equation (3.2) in equation (3.1) for z=1, 2, -+, k, we have
2
dinl _ | dinf . di d(f ] din (pe41)
ag =~ Zx[ a9 T u dﬁ( 7 ) treaT g - (33)
Since f is an exponential p.d.f with mean & , (3.3) is simplified as
_ _,  dE _
% ~ g(—a Yt m6T - 150 3)+xk+lrk6 2, (3.4)
An approximate MLE @a is obtained as
) 1/2
@0 1 2 gx’d" -
9a=—2——i—2— B, - r > 0, (3.5)

"o

where Po is the mid-point estimator. We take "+” in optimal sign in equation (3.5) since 9,,
must approach @, as k£ — oo (that is, d; — (). Kendell and Anderson(1971) obtained the
same estimator based on a different approximation. Now to obtain the jackknife estimator

using the mid point estimator, we evaluate estimators @, which can be obtained by deleting

one sample in (7, 7], ¢=1, 2, *--, k. The estimators é?a i1=1, 2, -, kE+1, are
given by
) o 172

~ &+ (= 1) d?

Go 1| jg‘ﬁfxf ! ! ' _

2 + 2 60 3(7’_1) l_l, 2, ’ k,

g, = ) 1/2
/5\6 1 7i2 leidf — b
2 + 2 80 - 37 1== +1,

where /0\6 is defined in equation (2.1). By the Quenouille’s method the pseudo jackknife E

can be obtained as follows
o= N® —(N-18&, i=1, 2, -, k+1.

Therefore the jackknife estimator ZI using the approximate estimator based on Taylor series

expansion is
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7a = LN:= xiﬁa-

Note that if all observation are censored (that is, #=0), the acceptable ,9,, and ]a can not

be obtained. The case of # = 0 tends to occur when p, is large and N is small. If the
number of inspection and the probability of censoring are very small, then the quantity in the
brace of equation (3.4) may be negative and hence acceptable Pa and L can not be obtained.

3.2 Approximate estimation using Newton—-Raphson method
We can obtain another approximate estimator by using first step iteration of the

Newton-Raphson method. Let /90 be chosen as an initial value in the Newton-Raphson
procedure. Then the aprroximate estimator /5,,' is

PO+ %%|0=$

b, = 7

where

2
o~ L
b=~ 202'9%‘

If we replace /I\O with the following simpler observed information for a continuous inspection

y A
0 @02
| 2+(5)
— _ = I 0
/9,1'— /90 1 127 s y > 0

The estimators (9;' which can be obtained by deleting one sample in (r;=y , 73,

i=1, 2, -, k+1, are given by

A.( 4$¢ % dff + (= 1) & ,\._2]
3 FE b Gl i -
. 90 1 12(7_ 1) 60 l ]-, 2, s k,
2 . >oxidi L,
G- W i= k1,

Also the pseudo jackknife f,,\ is calculated as follows:
o=N¥, —(N-18, i =1, 2, =, ktl

Hence the jackknife estimator 7a' using approximate estimator based on Newton-Raphson
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method is

,7(1' = %z: xt’f(:-
4. Simulation Study

Design parameters in the simulation experiments include sample size N, probability of
censoring p., number of inspections % and inspection schemes. We consider the follow

combinations;

N = 20, 30, 50, 100
k =235 1710
pe = 005,01, 03, 05
T, = —@In(p.) ® censoring time,

For each combination of N, k£, p. and inspection schemes, exponential random variables are

generated by wusing IMSL, and 3’0, 3‘,1, Par and the jackknife estimators using these

estimators are calculated. For each combination of parameters, we obtain biases and MSE’s of
estimators through 3000 simulations, respectively. There are some parts of the simulation
results in Table 1 and Table 2 and the rest are available on request.

In these tables, the mid-point estimator, the approximate estimator based on Taylor series
expansion and the approximate estimator using Newton-Raphson method are denoted by MID,
TS and NR, respectively, and the maximum likelihood estimator and the jackknife estimator
are denoted by MLE and JACK, respectively.

From Table 1 and Table 2, we observe the facts as follow;

In the mid—point estimator,

(1) Jackknife estimator has generally smaller bias and MSE than approximate estimators,
especially in the cases of small sample size, small number of inspection and large probability
of censoring.

(2) Mid-ponit estimator and jackknife estimator are generally overestimated.

(3) Jackknife estimator is biased and also not consistent.

(4) Estimator in equally spaced scheme is slightly efficient when p. is small.

(5) In small number of inspection, bias of estimator is relative to probability of censoring.
In the approximate estimator based on Taylor series expansion,
(1) Jackknife estimator has generally smaller bias and MSE than approximate estimators

except for very small p,., especially in the cases of small sample size, small number of

inspection and large probability of censoring.



876 Kil Ho Cho, Yong Ku Kim and Seong Hwa Jeong

(2) For small probability of censoring and small numer of inspection, approximate estimator
and jackknife estimator may not exist. )

(3) Approximate estimator is overestimated, but jackknife estimator is generally
underestimated.

(4) Estimator in equally spaced scheme is slightly efficient when p. is small
(5) In small sample size and large probability of censoring, bias and MSE are invariable for
number of inspection £.

In the approximate estimator using Newton-Raphson method,
(1) Jackknife estimator has generally smaller bias and MSE than approximate estimators

except for very small p., especially in the cases of small sample size, small number of
inspection and large probability of censoring.

(2) Approximate estimator is overestimated but jackknife estimator is generally
underestimated.

(3) Estimator in equally spaced scheme is slightly efficient when p. is small.

(4) In small sample size and large probability of censoring, bias and MSE are invariable for

number of inspection £.

Table 1
Biases for three approximate estimators and their jackknife
estimators
N=20
c | insp IFE 0.05 01 03 0.5

M | MID] TS | MR | MID| 1S | R | MID [ TS | R | MID | Ts | \R
MLE | .9242| .2077| .1113] .5807| .0543| .0653| .3264| .1684 | .1747| .4313| .3794| .3801
B | jack| .s788| .2585| 0855 .5017| .0193| .0008| .1004|-.0506 |-.0465 |-. 0742 |- 1242 |- 1238
MLE |1.1646| .1565| .1527| .6999| .0030| .0907| .3354| .1666| .1735| .4355| .3825| .3832
2B | jackli 1192|1854 L1086 .6209|- 0492| 0162| .1004|-.0542]-.0492 |-.0700 |-. 1215 |- 1210
MLE [1.1646| .1565| .1527| .6999| .0030| .0907 | .3354| .1666| .1735| .4355| .3825| .3832
B 1 Jack|1.1102| L1854| L1086| 6209|0492 | .o162| .1094|-.0542 |-, 0492 |- 0700 |- 1215 |- 1210
s | ME 0527 .0133] .0137| .0648| .0416| 0418| .1816| .1754| .1754| .3827| 3806/ .3806
JACK| .0073 |-.0300 |-.0297 |-. 0140 |-. 0361 |- 0360 |-. 0443 |-, 0503 |-, 0503 |-.1228 |-, 1248 |-. 1248
MLE | .0843| .0153| .0164| .0759| .0427| [0430| .1809| .1739| .1739| .3831| .3810| .3810
10 VEP ) okl 0389 |- 0314 |- 0304 |-. 0029 |-. 0362 |-. 0360 |-, 0450 |-, 0518 |-. 0518 |-. 1223 |- 1244 |-. 1244
MLE | .0880| .0154| .0165| .0894| .0415| (0420| .1880| .1736| .1736| .3856| .3808| .3808
U sack| Loa27|-.0305|-.0296 | L0105 |- 0373|-.0368|-. 0379 |- 0521 |-. 0521 |-, 1199 |-. 1246 |- 1246
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N =50
« | insp Pc 0.05 0.1 . 0.3 0.5
M MID | TS R MID | TS \R MID | TS \R MID | TS R
MLE | .9139|-.0462| .1136! .5604|-.0075| .0557| .2055| .0514| .0565| .1765| .1256| .1262
BS JACK| .8964 |-.0246| .1039| .5305|-.0230| .0314| .1266|-.0249 |-.0205| .0197|-.0304 {-. 0299
MLE |1.1575|-.1142| .1506| .6779|-.0152| .0750| .2135| .0477| .0535| .1792| .1269| .1276
2| JACK [1.1400 |-.0958 | .1340| .6480(-.0353| .0470| .1346|-.0292 |-.0240| .0225|-.0291 |-. 0286
MLE |1.1575|-.11421 .1506| .6827-.0152| .0750| .2666| .0477| 0535 .2841| .1269 ,1276
Bl JACK [1.1400 {-.0958 | 1340 .6480{-.0353| 0470 .1346{-.0292 |-.0240| .0225 |-, 0291 |-.0286
MLE | .0470| .0088| .0091{ .0387| .0162| .0163| .0615] .0554| .0554 | .1305| 1284 | .1284
ES JACK| .0295 |-.0079 |-.0076 | .0088|-.0132|- 0131 |-.0172 |- 0233 |-.0233|-.0262 |- 0282 |-. 0282
0 |e MLE | .0776| .0083| .0093{ .0517| .0188| 0191 | .0614| .0546| .0546] .1292| 1271} .1271
JACK| 0601 |-.0096 |-.0087 | .0218|~.0110|-, 0108 |-.0173 |-.0242 |-, 0241 |-.0275 |- 0296 |-. 0236
MLE | .0837| .0110| .0121} .0648| .0174| 0179 .0680] .0538| .0538{ .1320! 1273| .1273
EsL JACK | . 0662 |-.0066 |-.0055 | .0348 |- 0124 |-.0120{-.0107 |-. 0249 |-. 0249 |-, 0246 |-. 0293 |-. 0293
Table 2
MSE’'s for three approximate estimators and their jackknife estimators
N = 20
« | insp |FC 0.05 0.1 _ . 0.3 0.5
M [ D[ TS [\ | D[ TS [ \R [ MID[ TS [ N | MID[ TS | AR
s MLE |1.9420 11,3032 (1.4019 |1.6694 |1.5732]1.5761 |2.3312(2.3737 2. 3632 4,0393%4.0548;4.0533
JACK [1.7847 |1,1359 1. 3129 11,4552 |1, 3732 1. 4288 |1. 7476 1. 8413 1.8335‘2.2032l2.2566?2.2554
- MLE [2.7531 |1.5035 (1, 5411 [1.9589 |1, 7242 1.6290|2.3926 |2. 4191 |2. 4088 |4, 0255 ;4. 0380 4. 0366
JACK [2.5721 |1, 3676 ]1. 453211, 7237 |1. 5552 1.4828 |1.7999 |1.8843 |1.8759 [2. 1916 2. 2334 |2, 2422
- MLE |2.7531(1.5035 15411 |1.9589 1. 7242 1.6290 |2.3926 |2. 4191 |2. 4088 |4. 0255 |4. 0380 (4. 0366
JACK |2.5721 [1.3676 |1. 4532 |1.7237 |1, 5552 1. 4828 1.7999 |1.8849 |1.8759 |2. 1916 |2. 2334 |2, 2422
| MLE |1.3298(1.3480 |1.3474 [1.4837|1. 4943 1. 4941 [2. 3194 2. 3218 |2. 3218 3. 9946 |3 9953 |3. 9953
& JACK |1.2497|1.2694 1.2690\1.3492 1.3620 1,3619 |1.7997 |1.804311.8043 |2.2180(2 2202 |2, 2202
0 e MLE [1.3696 |1.3545|1.354311.4977 |1.4980 (14979 |2.3178 :2.3195 2. 3195 |4. 0008 |4. 0014 |4. 0014
JACK 11,2863 |1.2781 |1.2778 |1.3609 |1. 3662 1. 3660 |1.9788 |1.8030 |1.8030 2. 2222 2 2244 |2, 2244
csL MLE {1.3724 |1.3647|1.3642 |1.4974 |1.49851 4982 |2.3199 |2.3222 2. 3221 |4. 0021 |4 0029 |4. 0029
JACK |1.2886|1.2879 |1, 2873 1.3530 |1. 3673 [1.3669 |1.7972 |1.8049 |1.8048 |2. 2204 |2. 2248 |2, 2248
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N = 50
K insp Pc 0.05 : 0.1 ‘ 0.3 : 0.5 .
M MID TS AR MID T8 \R MID TS \R MID TS R

ES MLE [1.2804| .6697| .5834| .8276| .6537| .6117| .8070{ .8135| .8097|1.2109{1.2170(1.2164
JACK11.2367 .6183| .5677| .7759| .6246| .5883} .7251| .7532]| .7493|1.0227{1.04301.0424
5 £p MLE {1.9131| .7540| .64771.0425| .6946| .6509| .8246| .8235! . 8196 (1.2102{1.2149 |1.2144
JACK [1.8607 | .7032] .6308 | .9833! .6700] .6268| .7410| .7637| .7595|1.0213|1.0407 |1.0401
ESL MLE [1.9131| .7540| .6477(1.0425| .6946| .6509| .8246| .8235 .81961.2102]1.21491.2144
JACK [1.8607| .7032| .6308| .9833| .6700| .6268| .7410! .7637| .7595|1.0213|1. 0407 |1.0401
£S MLE | .5445| .5507 | .5505( .5870| .5910|  5909| .7946| .7957| .7957 |1.20761.2079{1.2079
JACK| .5310| .5381| .5380| .5662 .5713} .5712| .7352| .7371| .7371|1.03381,03471.0347
10 - MLE | .5670| .5577| .5576| .5935] .5929] . 5929| .7942| .7949| .794911.2060 |1 2063 |1.2063
JACK| .5523| .5456{ .5454| .5717| .5731| 5731 .7347| .7365| .7365|1.0327|1.03361.0336
ESL MLE | .5661| .5593| .5591 | .5956| .5949| 5948 7956 .7967| .7966 |1.2050|1.2054 |1.2054
JACK| .5512| .54701 .5468 | .5731| ,5752| .5750| .7351| .7383| .7382|1, 0309 |1.0326]1.0326
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