The Korean Communications
in Statistics Vol. 5, No. 3, 1998
pp. 809-817

Waiting Times in Priority Polling Systems
with Batch Poisson Arrivals

W. Ryul), K.P. Jun?, D.W. Kim® and B.U. Park?¥

Abstract

In this paper we consider a polling system where the token is passed according to
a general service order table. We derive an exact and explicit formula to compute the
mean waiting time for a message when the arrivals of messages are modeled by
batch Poisson processes.

1. Introduction.

A priority polling system, like a cyclic polling system, consists of a single server shared by
multiple queues (or stations), say N. In a priority polling system, however, each gqueue is served
in an order specified in a polling table of length M(=N). Queues are given higher priority by
being listed more frequently in the polling table. After serving the station at the end of the table,
the server restarts at the first station in the table and the ordering is repeated. Queues can be
listed in an arbitrary order and an arbitrary number of times.

In this paper, we consider a priority polling system with infinite capacity where messages
arrive in batches. The batch arrival processes are assumed to be independent Poisson with
different rates and the numbers of messages in a batch are assumed to have arbitrary
distributions. The service time distributions are arbitrary and independent across gqueues. The
switch-over times, which begin at the completion of serving one station and end at the polling
instance to the very next one, are also arbitrary and independent. The service policy is
exhaustive, which means that once the server starts to serve a queue it continues until the queue
is empty. We derive an explicit formula to compute the mean waiting time for a message. The
results presented here relieve one from depending on expensive simulations.

The analysis of cyclic polling systems can be found in Ferguson and Aminetzah (1985), and
Takagi (1986) for example. Priority polling systems with Poisson message arrival processes have
been considered by Eisenberg (1972), and Baker and Rubin (1987). This paper basically extends
the results of the latter two works to the case of batch Poisson arrival processes.
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In the next section, we consider single queue systems with vacation periods which provide
basic building blocks for the analysis of polling systems. The main results are contained in
Section 3.

2. Single Queue System with Vacation Period.

In a polling system with several stations, a station may be thought to have a vacation period
when the server is polling one of the other stations. Hence, we first consider a system with a
single station and a single server with vacation periods. A single server queue system with
vacation periods has been considered by Eisenberg (1972), and Levy and Yechiali (1975) for
Poisson arrival processes. Here, we extend their results to batch Poisson arrival processes.

There are several models for single server queue systems with vacation periods. For direct
application to polling systems we consider the following model. Upon termination of a single
vacation, the server returns to the queue and begins to serve those messages, if any, which have
arrived during vacation, and continues to serve the queue as long as there is at least one
message in the system. If the server finds the system empty at the end of a vacation, it
immediately takes another vacation, and continues in this manner until it finds at least one
waiting message upon return from a vacation. In what follows, a vacation period means the time
interval from the point when the server leaves the queue to the point when it starts to serve the
queue again. It should be differentiated from a single vacation.

2.1 Vacation and busy period  Let v denote a single vacation period, and write V for a
vacation period. Denote by b a busy period initiated by 1 message. We say that a busy period
begins when the server starts to serve the messages in the system and ends when there are no
more messages left. A busy period initiated by 1 message is the busy period in the case that
there is only 1 message waiting for service when the server returns from a vacation. Let B be
a busy period (or an occupation period). Denote, by £ x, the Laplace-Stieltjes transform(LST
for short) of the distribution function of a random variable X, and by px, the probability

generating function of a discrete random variable X.

Suppose the queue has independent Poisson arrivals of batches with arrival rate A. Then
following Levy and Yechiali(1975) we can deduce

£y(@={1—ct (2} Hl—cp& (2) (2.1)
where c¢;= L (4).

To find a formula for the LST of B, let N(® and M(D denote the number of batches and
messages, respectively, during the time period ¢, and wm denote the number of messages
contained in an arbitrary batch. Given M H) = £k (k>1), the distribution of M(#) is a k-fold
convolution of the distribution of m. Furthermore, given M(£)=; (;=1) the distribution of B
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is a j-fold convolution of the distribution of &. These entail, for k=1,

Ef{e "PINv) =k} = {p.(£ 5(2))}*.
In the case that N(v)=0, the server takes another single vacation so that the conditional
distribution of B given Muwv) =0 is the same as the unconditional distribution of B. The LST

of the conditional distribution of B given v= vy is then given by
E{e _ZB|2)= Uo} _ { E (e -23) “1)e — A, +e */l{l—ﬁm(utb(z)))va.
From this we get the following equation for he unconditional LST of B :
£ p(z)={L p(2)—1}cg+ £ U1 = p, (£ ,(2))}
Solving this equation for £ z(z) we obtain

£p(2)=(1—cp) "ML A=, (L,(2N}—cl. (2.2)

2.2, An Extended Markov-Chain. The method of finding the LST of the waiting time
distribution relies on a Markov chain representation for the number of messages in the system.
We define an embedded Markov chain with transitions occurring at epochs of service completion
or vacation termination, and to distinguish between these two types of transition instants we
consider an extended state space {(7,7):7=0,1;7=0,1,2,...}. Here, ¢ represents each type of
transition instants, {) for vacation termination and 1 for service completion of a message, and J
counts the number of messages in the system.

Let S denote the service time of a message. If we write (i,,7,) [or the state of the system
at the »-th transition moment, then the sequence {(7,,/,);#=1} determines a semi-Markov

chain with a transition law given by
(in+lyjn+1) = (ly]n+M(S)—1); ]n21

= (0, M(V)), (in,7.)=1(1,0)
The equilibrium state probabilities, 7 ;= 1iI;120 Pli,=1i,7j,=7;i=0,1,7=0,1,2,..., satisfy
ry=m P{M(V)=/}, ji=1,2,.., (2.3)
ry= gy r 4 PUKS) =i~ k+1), j=0,1,.. (2.4)

where 7 ., =mp+ 71

We will express the generating functions of these state probabilities

o0

m(z) = ];)Zjﬂoj, m(z)= Zz’nlj, 7(2) = my(2) + m(2)

in terms of the probability generating functions of v and S. First, we can easily deduce
P{MWV=7=0—c) 'P{Mu)=j}
Using (2.3) and (2.4) we obtain
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mo(2)= (1= cp) ~'m 1P 4r(2) — o), (2.5)
m(2) =z "Hm(2) — 71p}p m5(2). (2.6)

Applying (25) and using 7(z)= my(z)+ 7;(2) we can deduce
m(2)=71(1—¢)) "Hz— (2} b mo(2) (b mu(2)— 1}, @.7)

Both the equations (2.5) and (2.7) involve xy. Since my(1)= 7y from (25), it follows that
m0=1—m(1). Now applying 1’'Hopital’s rule on (2.7) we find

r(D=00-¢) H1=AE(m) E(S)} 'Ar E(m) E(v). (2.8)
This entails

B (1= c){l—AE (m) E(S))
T0= " 1=¢){1—AE(m) E(S)}+AE(m) E(»)

2.3. Waiting Time. Now we find the LST of the distribution of the waiting time W of an

arbitrary arrival. Let C be a sojourn time of an arbitrary message, defined by W+ S. The
number of messages that this message leaves behind it at its service completion equals to that

of arrivals during its sojourn time C. This implies P{M(C)=j}=n/7;(1). Thus we can
write E {29} = n,(2)/7,(1). Since it also follows that E{z™}= 2 21— p.(2)}, we
can deduce utilising (2.7) and (2.8)

_ {1=AE(m E(S)} (2 b un(d—1)
£l =, (2)) = TEG) E(0) 2= mo() -

If we let a=A(1—p,,(2)), this results in

{1-2E(m) E(S)}2(a){l—2£ (a)}
AE(m) E({es(@)—p, (1—a/D}

£ (a)=

Since C= W+ S, the LST of the waiting time distribution is given by

£ ()= {1-AE(m) E(H1—£ (2)}
AE(m) EW{L (2)— pn (1—2/1)}

By applying !'Hopital’s rule on (2.9) succesively and noting that the second derivative of the
inverse function of p,, is given by (&?/dz¥p,; (2)=—p (D’ () {p..(b. 1 (2)}3, the mean
wating time is expressed by

E (V%)
2E (v

(2.9)

AE (m) E(S)
21—2E(m) E(9))

E{m(m—1)}
QM{E(m)}2{1—2E(m) E(S)}

E(W)= + + (2.10)
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3. Priority Polling System.

In a priority polling system each queue (station) is served in turn according to a polling table
T. For example, suppose there are 3 queues and 7'=[1,2,1,3]. Then in a cycle station 1 is
polled first and third while station 2 and station 3 are polled second and last. After station 3 is
polled, the next cycle starts with station 1 again. Thus station 1 is polled twice as frequently as
station 2 and 3.

A priority polling system has been considered by Baker and Rubin (1987) for Poisson arrival
processes. Here, we extend their results to batch Poisson arrival processes. Our method heavily
relies on the aforementioned work, and basically uses the notion of pseudostation which
corresponds to each entry in the olling table. In the above example where 7=[1,2,1,3] there
are 4 pseudostations.

The system consists of N queues with infinite capacity. There are M pseudostations in the
polling table 7(7),i=1,...,M, The service policy is exhaustive, which means that the server
continues to serve a station until it becomes empty. Batches of messages arrive at each queue
according to independent Poisson processes with rates A;, 7=1,..., N, and each batch arriving at
station ¢ consists of m; messages. These batch sizes and the service times of a message,
denoted by S; for station i, are independent across the stations and have arbitrary distributions.

Let k(7) be the index of the sth visited pseudostation. We note that A(;+ M) = k(7). Write
a(7)= T(k(7)). Thus ¢(j) is the index of the jth visited underlying station. Let [;,j=1,2,...
be the time during which messages are accumulated for the jth visited pseudostation. If station
{ corresponds to the jth visited pseudostation, ie., 7= g(;), then this equals the time elapses
fromthe last departure to the next poll for station :. If we focus on only one station, say station
7, and if i=gq(;), then I; may be thought to be a single vacation period for station 7. Hence
using the equation (2.10) we readily obtain the mean waiting time for the station if we find the

first two moments of I;. Below we derive useful formulas for computing these two moments.

3.1. The First Moment of I;, We define station time at a pseudostation be the time spent for
switch-over from the previous pseudostation plus the time spent for serving messages in the

pseudostation during a single visit. We write 7 for the station time realized at the jth visit to
a pseudostation. Let %, equal 1 if messages arriving at pseudostation ¢ during the station time
of pseudostation j are not served until the next visit to pseudostation 2, and 0 otherwise. For
example, if 7T=1[1,2,1,3] then (A, hp b h1)=00,0,0,1), (lo, o b, ho)=
(1,0,1,1), (ha, by, by, hy)=(0,1,0,0), and (hy, by, kg, hy)=(1,1,1,0). Let D; be

the time spent for switch-over from pseudostation j to Jj-+1(mod M). Define
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Ci=L+T,—D;_|. If i=¢q(j), then it is the time between two consecutive departures from

station 1.

The basic relationships between I;, T;, C; are :
=1
L= ',Z Tj-i hupi-ot D=y 3.1

=1
Cj= ~ T,'_," hk(j),k(j_,)‘l‘ Tj (3.2)

A formula for the first moment of I, may be obtained from these and another identity which are
based on a recursion formula for the LST of the distribution functions of
T=(T;, Tjs1s-» Tjrpy-1)

Let b; be the busy period initiated by 1 message for station 7. Given x= (xy, ..., xs), write
fori=1,...,M—1

Y5.i= A gl i ai+ ol =D m (£ 5, (X))},
and ¥;u=A {1 = Dm, (L s,,(x1))}. Then, by the arguments parallel to those of Baker and
Rubin (1987) we obtain
L4, =L, (outyiw L 50,0 +y0 . xu1tYiu-1), (3.3)

By differentiating (3.3) with respect to x, we get

E(Tjsw) = EWD;-){1+4,) E(by,) E(myp)}
(3.4)

-1
+ A4 E(by) E(my) ?‘—‘—"1 E(T i )b i it 0
Since £ 5(2)= £ s(z+A{l =D (£ ,,(2))}), we find, writing p,= A4, E(m;) E(S)),
E(b)= E(S)/(1—p) (3.5)
By using (35) we can rewrite (3.4) as

=1
E(T;+m)= E(D;_1)+ 0 i ];SQIE(T;'H)hk(,)'k(;'H)WL E(T ;o).

A relationship between the first moments of 7; and I; may be established from this by using
(32) and the fact C;=I—D; +T;:

E(Tjsm)= ED;~)+0,) EUT )/ (1—045) (3.6)

We now derive a formula for the first moment of I; in equilibrium state. We first observe that

in steady state the distributions of T}, I;, C;, D; do not depend on the time index ; itself, but on

its corresponding pseudostation index j(modM). Thus in an abuse of notation we now index all
these random variables by pseudostation in what follows. In steady state, for j=1,..., M, we
can write from (3.1) and (3.2)
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E(I)= ﬁ;fjfi(T,-)h,nL E(D;-)), (3.7)
E(C)= g.E(Ti)hﬁ‘l' E(T), (3.8)
tF]

Furthermore, we can rewrite (3.6) as

E(T)=E(D;_)+p ny EUIN/(1—0 7y (3.9)
A set of M simultaneous equations for the first moment of I; is readily obtained from (3.7),
(3.8) and (39) :

E(I)= ﬁ{ E(D; )+ 7202 B} byt D). 1<<M (3.10)

32 The Second Moment of I;, ~We show that the variances of I;'s depend on the second
moments of station time 7;’s. First, we observe that the expected value of the cross product
T,T , depends not only on the pseudostation indices 7 and ¢ but also on which pseudostation
is visited first. Hence we define »;, = E(T;T ,)— E(T;) E(T ,) when pseudostation ¢
visited before pseudostation 7. Then, in equilibrium state we can deduce from (3.1), (3.7) and the

fact that 7, and D, are independent

Var([j) = zl{ zlrékhﬂe-’r Srwh,}?‘i“ ﬁ rpkhj/g}
ﬁ {gyk[h]k—f_ E: V[kh;k+ﬁ 7k1h;k} (3.1

+ var(D;-).

A system of M? equations regarding rieh,j=1,..,M, ¢ =1,...,M can be derived by
differentiating (3.3) twice and utilising (3.4) and (3.5), which is given by

P 1) ;
rjiz_l—-:p—;(;{k]+l7’ikhk+?7ikhk+ 217’“/’1;17} 2 <3,

var (D;,) 4 A il E (S 1) E (m’ny) — E (m np)} ET)
(1—p 7)° (1—p 7))’
+2 o E(S%) E (m703) + 4 np{ E(S 1)} E (m 1)

{(E(m*ny) — E(m )} E(I)=(1— 0 1p)°

0 10 ﬁ
-+ h
-0y & **

__ Py S Sk :
Ve = l_p 0 =[7kihjk+ =lrkghj}?+ k=j+lr[kh]k >].

<

/A

(3.12)
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We note from (3.12) that the three summations inside the brackets of (3.11) can be replaced by
7 jo. Therefore, we find that

_1zemw
var ([/) = 0 0 ﬁjrj[hj[ + VaI'(D/'_l). (3.13)
The variances of I; can be obtained by first solving the system of equations (3.12) to get

vie,J=1,...,M, ¢ =1,...,M and then plugging them into (3.13).

33. Mean Waiting Time. We first consider the mean waiting times of pseudostations
W}, =1,...,M. As we noted it earlier, I; corresponds to a single vacation period for the

underlying station of pseudostation j. In applying (2.10) we note that the arrival rate, the
number of messages in a batch and the service time depend only on the underlying station index

(not on the pseudostation index). Thus we have, for j=1,..., M,
_ var(l) E (1) 0 10 E (S%y)
EW) = 35y V72 T ooy ESy)

(3.14)
E (m’n) — E (m pp)
24 73 E (m )Y (1= o )

The mean waiting times of the underlying stations W, can now be obtained from E ( W;) by

+ =1,..., M.
the principle called PASTA (Poisson Arrivals See Time Average ; see for example Wolff, 1982).
Let T be one full cycle time of the server, ie., T= ﬁTj. Then it i1s easy to see that,
=
independent of the indices of stations, we have 7T = 1; C;. Here and below ; _ means
JLy) =1 =1
summation over all pseudostation indices 7 such that 7(j) =i Hence by PASTA we find, for
i=1,...,N,
E(C) :
) = —=>% - E(W =1,...,N. 1
E(W)= 2 ~%cp ~ B, i=1..N. (3.15)

Now the fact that E(T;)= E(D;_)+p r; E(C;) together with (39) implies E(C;,)=

E(1;)/(1—p ;). Furthermore we can see E(7)= E(D)/(1—p) where D= ﬁle and
~

o= ﬁlpi. Plugging these two expressions for C; and T into (3.15) we get
&

- 1—o : . Y =
E(VVz)_ E(T)(l—pl) ﬂ7§=iE(Ij)E(VV;)’ 1] ].,...,N.
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