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Bayes Estimation for the Reliability and
Hazard Rate under the Burr Type X Failure Model

Jang Sik Chol), Hee Jac Xim? and Sang Gil Kang?
Absiract

In this paper, we consider a hierarchical Bayes estimation of the parameter, the
reliability and hazard rate function based on samples from a Burr type X failure
model. Bayes calculations can be implemented by means of the Gibbs sampler and a
numerical study is provided.

1. Introduction

The Burr distributions was first introduced and classified twelve types of distributions by
Burr(1942). Since the distributions have a wide variety of shapes, these distributions are
useful for approximating histograms, particularly when a simple mathematical structure for the
fitted cumulative distribution function is required. Other applications include simulation, quantal
response, approximation of distributions, and development of nonnormal control charts. A
number of standard theoretical distributions are limiting forms of Burr distributions. The Burr
distribution was first proposed as a lifetime model by Dubey(1972, 1973). Lewis(1981) noted
that Weibull and exponential distributions are special limiting cases of the parameter values of
the Burr type XII distribution. She proposed the use of the Burr type XII distribution as a
model in accelerated life test data representing times to breakdown of an insulating fluid.
Evans and Ragab(1983) obtained Bayes estimators of the two parameters and reliability of the
Burr type XII distribution by assuming discrete values on a finite set of points of the prior.
Nigam(1988) gave the prediction interval for the k-th order statistic in a future sample from
Burr type XII distribution based on a censored sample from the same distribution. Sartawi and
Abu-Salih(1991) obtained the prediction interval for the order statistic in the two sample and
one sample cases from the Burr type X distribution based on a censored data. AL-Hussaini
and Jaheen(1992,1994) developed approximate Bayes estimators of the two parameters,
reliability and failure rate functions of the Burr type XII failure model by using the methods
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of Lindley and Tierney and Kadane under type I censored data.

For Gibbs sampler approach, Dey and Lee(1992) considered Bayesian computation for the
parameters and the reliability function of 2-parameter exponential distribution, and also
constrained parameter and truncated data problem in multivariate life distributions. Tiwari,
Yang and Zalkikar(1996) considered Bayesian estimation of the parameters and the reliability
function based on type Il censored data from a Pareto failure model.

In this paper, we consider the Gibbs sampler approach for the hierarchical Bayes analysis
of the Burr type X failure model. In section 2, we give the model and describe the
computation methods for Bayes estimation. In section 3, we implement the Burr type X failure
model with an illustration from the simulated data.

2. Hierarchical Bayes Model and Gibbs Sampler

We assume that the Burr type X model represent the lifetimes of all item. The Burr type X
probability density function(pdf) with parameter § is given by

Ax | 8)=26xexp(—x*)(1—exp(—x2)) 7, x>0, 6>0. 2.1n

A random sample of # items is drawn from (2.1) and is put on life test. The observed

sample consists of the failure times, x;,x,**,x, The likelihood function of the sample is

given as
Ax| 6)=2"0"IT"_ x;exp(— x2)(1 — exp(— x%)) -1 (2.2)
where x=(x), X, ***, X,). The reliability and hazard rate functions are given by
R(H=1—(1—exp(—£)) 7}, (2.3)

26texp(— #)(1 —exp(—£)) 7! (2.4)
1-(1—exp(= &)1 '

For convenience, densities are denoted generically by brackets, so joint, conditional, and

()=

marginal forms, for example, appear as [X, Y], [X | Y], and [X]. Multiplication of
densities is denoted by * ; for example, [ X, Y]=[X | Y]*[Y].

The general hierarchical Bayes model is as follow:
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(1) (x| 61=2"0"II"- ;x;exp(— x2)(1 — exp(— x9)) *7!, where x=(x;, %5, ", %,).

2 [0 ay, 811~ Glay, B1), where G(ay, £)) is gamma density given as

A1 ay,B)= Hél) 6" ‘exp(— 816), >0, 850,

(3) We assume that the joint prior is [a;, 81]1=[a]1*[ 8]
[a,]xexp(— ca;), where c¢ is a known positive constant and
[8]~G(a,, B;), where @, and [, are known positive constants.
In (3), we shall consider several choices of ¢ while doing the data analysis in Section 3.

The Gibbs sampler is an iterative Monte Carlo integration method, developed formally by
Geman and Geman(1984) in the context of image restoration. In Statistical framework Tanner
and Wong(1987) used essentially this algorithm in their substitution sampling approach.
Gelfand and Smith(1990) developed the Gibbs sampler for fairly general parametric settings.
To summarize the method briefly, suppose we have a collection of p r.v.'s Uy, -+, U, whose
full conditional distributions, denoted generally by [U, | U,, »#s], s=1,,p are available for
sampling. Under mild conditions, these full conditional distributions uniquely determine the full
joint distribution [ Uy, -+, U,] and hence all the marginal distributions [U],s=1,--,p. The
Gibbs sampler generates from the conditional distributions as follows: Given an arbitrary

starting set of values U\ ”, -, U”. we draw U from [U] | UQ(O),"',U,)(O)], UY from
LU, | 0, U5, U, and so on up to U,Y from [U, | U, U2,] to complete
one iteration of the scheme. After ¢ such iterations we arrive at a joint sample
(Ul('),---,Ui,“)) from [U;,-+, U,]. Under mild conditions, Geman and Geman(1984) showed
that(Ul('),-'-,U,,(t))—>d(U1,---,Uﬁ)~[Ul,---,U,,] as #>0o. Hence for sufficiently large f
Us(t) can be regarded as a sample from [U,]. Parallel replications m times yields me iid. p
~tuples: (Uff),-“,sz)), j=1,-,m. For any function T of Ul,"",U,, whose expectation
exists,

_;’11_ ZESIT(UP,"',U;,(”)—*E[ﬂUx,"‘, U)1 as m—oo

almost surely. The distribution of (U, -,U,) can be approximated by the empirical

distribution of (U ff)U I(U't))’ 7j=1,-,m. Similarly the marginal of U, can be

approximated by the empirical distribution of U ﬁf), =1, m I [U,| U, r#s] can be

computed, then

[U]= LU, | UL, r#s). 25)

1
m ;=1
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For any T(Uy,-, U,), let T,-(t)ET(Uff),---, Uf,f)), j=1,---, m, the empirical distribution of
T, -, T provides an estimate of [ 7(Uy, -, Ul

In implementing Gibbs sampler, we follow the recommendation of Gelman and Rubin(1992)
and run m(>2) parallel chains, each for 2d iterations with starting points drawn from an
overdispersed distribution. But to diminish the effects of the starting distributions, the first d
iterations of each chain are discarded. After d iterations, all the subsequence iterates are
retained for finding the desired posterior distributions, posterior mean and variance, as well as
for monitoring the convergence of the Gibbs sampler. The convergence monitoring is
discussed in detail in Section 3.

To implement the Gibbs sampler, we need to calculate the full conditional distributions.

From the model, the joint posterior density of 6, a; and B is

(0.a,8 1 2] o< [x] 0]1%[0 | a1, B11*[ (a,]*[ 8]

o< exp{ (6—1) gl log(1— exp(—x%)) — By 60— BoBy — cay] (2.6)
1 (n+a,—1) 5 (a;+a,—1)
I(ey) 9 A )

From (2.6), the full conditional distributions are given by

1 [o] a’l,Bl,_)d o exp[—e(‘gl_ 21108'(1‘ exp(—x%)))]a("“"‘l),

that is, [0 1] a), 8,41 ~ Glntay, 51— 2“11 log(1— exp(—x*N)]. 2.7

@ [B ] 6,0, 2] = expl— g+ B1A =77,
that iS, [61 , (9,(11,&1 ~ G[al+az,6+,82], (2.8)
3) [ay | 6,8, x] o< exp(— cal)‘ﬁ%l)— B (2.9)

To implement the Gibbé sampler, We should be able to draw samples from the conditional
densities given in (2.7)-(2.9). Simulation from the conditional densities (2.7) and (2.8) which
are both gamma densities can be done by standard methods. However, in order to simulate
from the posterior density(2.9), one approach is to use the adaptive rejection sampling
algorithm by Gilks and Wild(1992). Fortunately, the use of the adaptive rejection sampling
algorithm becomes simple for us because of the following result of lemma.

Lemma [a,| 6,8, x] is a log-concave function of a;.

Proof. Consider
1 ay 5 ay
[a’l | ‘9,51,1] & exp(~ Ca’1) I(al) B e,

then
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logla; | 6,8, x]1=a+a,log(B6)— logi{a,) — cay,

where a is the norming constant. Hence

ologley | 6,81, 4] _ . d Na,+1)
3a, = log($,8) — ¢ da, log( . )
1 f loge "z “dz
=Iog(b’16)—-c+7— 0
1 fe_zza‘a’z
b
Therefore
jee) Q0 2
2_—z_a —z_a
9%logla, | 6.8, £] 1 fo (logz)‘e ‘2z 'dz ~ fo logze ~“z"'dz
80'2 02 *® —z_a * —2z @
1 I foe 2z 'dz foe z 'dz
= —-lg—Var(logz) < 0, since z2~G(1,a,+1).

a;
So all required random variated generation is straightforward.

Using the Gibbs sampler, the posterior distribution of § given x is approximated by

(6141 = (md) ™! gl l=;+1[6 | ay= a1, B1= B 1w, X1 (2.10)

Also following Gelfand and Smith(1991), Rao-Blackwellized estimates of posterior mean and

variance of the @ are given by

+a
£08 | o n 141 211
gl 1=ﬁj‘+1 Biu— Z_"l log(1 — exp(“x%)) |

(md) ~1§;“1 1§+ e

Y (B Zl log(1— exp(— x)))*

. (n+ a)*
! 141 (2.12)
Zl Ig+l (Bru— 15;‘1 log(1— exp(—x%)))?

[ (md) —lgl 1=§+1 e ]2'

Biu— Zl log(1~ exp(— %))

and

Var(4 | x)

Q

3. A Numerical Example

In this Section, an illustrative example is represented by simulated data. In our simulation

data, we take n=20 and 6=3.0 and generate the observations x; from the Burr type X

failure model with parameter §#. Using Gibbs sampler, we need the marginal posterior
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densities as follows:

(61 a1,8.20 ~ Gln+ay, Bi— 2 log(1— exp(—x)], 31
(B[ 6,a;, x]1 ~ Gla,+ a,, 6+ 55) (3.2)

and
[01 ’ 19, .Blylc] o EXD(_ C(Yl)T—(LaT)_ Blalaal. (3.3)

We place diffuse second-stage prior on S, that is, a,=1 x10 ~5 and B,=1x10 -d,
To implement the Gibbs sampler, we consider m =25 independent sequences each with a
sample of size d=2000, and with a burn-in sample of another 2000. To monitor the

convergence of the Gibbs sampler for &, the parameter of interest, we follow the method by

Gelman and Rubin(1992). Let B/2000 be the variance between the 5 sequence means, 6,

each based on 2000 values. That is, B/2,000= ;::1( G, — 79_,)2/(5*1), where
79“= Zl —0,@, /5 and . Also, let W denoted the average of the 5 within-sequence variance,

S% each based on (2000-1) df; that is W= gl S%/5. Then find

 2.000-1 ] ]
V=""5"000" "t 200 Bt 52000 B

Finally, find R= V/W If V R is near 1 for the scalar estimands @ of interest, then this
suggests that the -desired convergence is achieved in the Gibbs sampler.
An inspection of Table 3.1 reveals that the hierarchical Bayes procedure is not sensitive to

the choice of c¢ as different choices of ¢ can lead to almost same point estimates of ?. So
we use the ¢=100 and hence @=2.9532. For the observations, the Figures 3.1, 3.2 and 3.3
are graphs of [B] 2], [R(D | x], [A(D ]} x] at a mission time ¢=1, respectively. From the
Gibbs sampler, Rl(t) o, RY is a sample from [R(® | x] and 7,7, o, ht? is a sample from
[#(H | x]1. The 90% credible intervals are (R wm, R Gosm) and (7 wm .k oosm)-
(0.05m) and (0.95m) are the 0.057™ and 0.95m ™ order statistics. For various mission

time ¢ tables 3.2 and 3.3 give the true values, the posterior means, the residuals and 90%

credible intervals for K(#) and 4(#) on same simulated data.
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[Table 3.11 Posterior Mean and Standard Deviation of 4

c 0.01 0.1 1 10 100

? 2.9532 2.9526 2.9528 2.9534 2.9532
SD(0) 0.6578 0.6585 0.6596 0.6600 0.6614

"Table 3.2] Posterior Mean anc 90% Credible Interval of R(?)

t R(?) R(D R(H—R(® 90% C.L

0.8 0.8944 0.8746 0.0161 (0.7678,0.9541)

1.0 0.7474 0.7316 0.0159 (0.5909.0.8484)

1.2 0.5557 0.5442 0.0115 (0.4096,0.6711)

1.4 0.3658 0.3591 0.0067 (0.2561,0.4644)

16 0.2144 0.2110 0.0034 (0.1451,0.2817)

1.8 0.1130 0.1113 0.0016 (0.0763,0.1531)

[Table 3.31 Posterior Mean and 90% Credible Interval of #(?)

t k() 7D WD — "D 90% C.L

0.8 0.6324 0.6737 - 0.0413 (0.3531,1.0518)
1.0 1.1800 1.2082 - 0.0282 (0.8556,1.5703)
1.2 1.7875 1.8045 - 0.0170 (1.5019,2.0932)
1.4 2.3872 2.3969 - 0.0097 (2.1774,2.5984)
16 2.9463 2.9516 - 0.0053 (2.8113,3.0778)
1.8 3.4572 3.4600 - 0.0028 (3.3794,3.5318)

[Figure 3.1] Estimated pdf of [&] x]
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[Figure 3.2] Estimated pdf of [R(? | x]
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[Figure 3.3] Estimated pdf of [4(?) | x]
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