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Nonparametric Methods for Analyzing
Incomplete Ranking DataVl

Dong Hoon Lim?2

Abstract

In this paper we consider the setting where a group of # judges are to
independently rank a series of & objects, but the intended complete rankings are
not realized and we are faced with analyzing randomly incomplete rank vectors. We
discuss some tests based on Friedman statistics on the designs completed through
rank imputation schemes suggested by Lordo and Wolfe (1994) and evaluate them on
the basis of simulated power studies, constructing their appropriate null distributions.

1. Introduction

Consider the setting where a group of # judges are to independently rank a series of k
objects. A judge is to assign rank 1 to the object she deems most inferior and so forth until
she assigns the final rank % to the object deemed most superior. We are interested in

testing the null hypothesis ( Hy) that the judges view the objects as indistinguishable,
versus a general alternative ( H;) that the objects are viewed as different. When all goes as

planned and we secure a complete ranking from each judge, this coincides with the no
interaction two-way layout setting with one observation per cell and one of the standard
test is the well-known procedure proposed by  Friedman (1937). However, in many
designed studies, the intended complete rankings are not realized and we are faced with
analyzing vectors of incomplete rankings. Lordo and Wolfe (1994) considered some rank
imputation schemes that assign the unused ranks to the objects left unranked by a judge for
this problem of incomplete rankings, but they did not evaluate them through power studies.
The ideas for imputation schemes originally arose from handling problems of nonresponse
in surveys. ( See, for example, Rubin (1987)). On the other hand, Lim, Lordo and Wolfe
(1997) recently proposed a screening approach utilizing the maximum and minimum
Friedman statistics as a preliminary approach for analyzing such data. While this approach is

intuitively appealing, it can be unable to make any conclusions relative to H, or H; on some
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incomplete designs.

In this paper we discuss some tests based on Friedman statistics calculated on the
completed design through rank imputation schemes suggested by Lordo and Wolfe (1994)
for the incomplete ranking data and evaluate them on the basis of simulated power studies,
constructing their appropriate null distributions.

In Section 2 we present three procedures using rank imputation schemes. In Section 3 we
present simulated null distributions for the Friedman statistics on incomplete designs. In
Section 4 we illustrate these procedures by applying them to a set of incomplete blood
coagulation data considered by May and Johnson (1995). In Section 5, we present the results
of a Monte Carlo simulation study to carry out power evaluations. In the final Section 6, we
consider other applications of these procedures to testing hypotheses with incomplete
rankings.

2. Rank Imputation Test Procedures

To test Hy versus H; for the incomplete rankings, we consider three test procedures based

on the Friedman statistic, namely,

- 12 _ nlkt]1)
S= nk(k+1) ;21[1?’ 2 ¥ 2.1

calculated on the design completed through rank imputation schemes to be discussed in this

section, where R;,j=1,...,k, is the sum (over the # judges) of the ranks corresponding to

the sth object.
2.1 Average Ranks Imputation Test Procedure

The average ranks imputation scheme involves taking the average of the unused ranks for
an individual judge and assigning this average to each of the judge’s unranked objects. -The

associated a-level test based on the Friedman statistic, S,4, calculated on the completed

design would be to

Reject H, iff S, = s (a, nk)

where s,(a,nk) is the upper ath percentile for the null distribution of the completed

Friedman statistic under this scheme. The common Friedman table in Hollander and Wolfe
(1973) has usually been taken as the null distribution table for that test statistic for purpose
of assessing significance of the incomplete data. However, as will be seen in Section 5, using
this table may lead to conclusions based on inaccurate significance levels. This is because
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these critical values in the Friedman table correspond to the setting where each judge ranks
all % of the objects.

2.2 Summing Ranks Imputation Test Procedure

The summing ranks imputation scheme bases the rank assignments to unranked objects on
the sums of the ranks for these objects over all judges who can provide information on the

preferences of all % objects. The following steps describe a system through which the unused
ranks are assigned to the unranked objects for each judge with an incomplete ranking.

STEP 1. Formulate Class A, consisting of all judges who have the least number of objects
left unranked.

STEP 2. Formulate Class B, consisting of all judges who have ranks assigned to all £
objects. For each of the £ objects, add the ranks over all of the judges in Class B, resulting

in % rank sums.

STEP 3. For a given judge in Class A, identify the unranked objects. Rank the sums from
STEP 2 for these objects from least to greatest, assigning to these sums only those ranks not
used by the judge. Use average ranks for sums which are tied. Assign these ranks to the
respective unranked objects for the judge. Repeat this process on each judge in Class A, until
the entire class is completed.

STEP 4. Once Class A is completed in STEP 3, the judges in this class are incorporated into
an updated Class B of completed judges.

STEP 1-4 are iterated until all of the incomplete rank vectors have been completed and the

final Class B contains the completed rank vectors for each of the = judges.

The test based on Friedman statistic Sy of S in (2.1) under this imputation scheme that

uses information from judges whose preferences are fully identified may be more powerful
than the test using the average ranks imputation discussed previously which ignores such

information in completing the design. Let s,(@, nk) be the upper ath percentile for the null
distribution of Sy  To test H, versus H;, Sy is then compared to its critical value

sula, nk).
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2.3 Counting Ranks Imputation Test Procedure

The counting ranks imputation scheme is structured much like the summing imputation
scheme in that, for a given judge, ranks are assigned to unranked objects based on the ranks

assigned by judges who have ranks assigned to all % objects. The following steps describe a
system used by this imputation scheme to complete the design.

STEP 1. Formulate Class A, consisting of all judges who have the least number of objects
left unranked.

STEP 2. Formulate Class B, consisting of all judges who have ranks assigned to all £
objects. Considering only these judges, calculate the following £ x & matrix;
tn tyg . bt
TRTCNT = | f21 T2 - P2
tw tip ... tw
where ¢ is the number of the judges in Class B who assign rank ¢ to object j. The counts

in the bottom row of TRTCNT corresponding to unranked objects will be ranked from least
to greatest, and the results will be used in ther assigning of unused ranks to these objects.
Counts in other rows of TRTCNT will be considered only if there are ties in the ranking of
counts in the rows below it. ( For details of handling ties, see Lordo and Wolfe (1994)).

STEP 3. For a given judge in Class A, consider a set C containing those objects left
unranked by the judge. Obtain the counts from row k& of TRTCNT for the objects in set C.
Rank these counts from least to greatest using the ranks left unranked by the judge. Assign
these ranks to the corresponding unranked objects for the judge.

STEP 4. Once Class A is completed in STEP 3, the judges in this class are incorporated into

an updated Class B of completed judges. The next iteration of this system is now instituted
by returning to STEP 1 and creating a new Class A of judges to be completed.

The test based on Friedman statistic S¢, like Sy calculated on the design using this
scheme can be used to assess statistical significance of the findings, emplying its critical

value s.(a, nk).

3. Simulated Null Distributions

The null distribution for the completed Friedman statistic in an incomplete design setting
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depends on the imputation scheme being used, the number of the objects 4, the number of
the judges =, and missing rank percentages. Under these conditions, the number of possible
designs to generate becomes quite large, requiring too much computer resources and time to
process. We use a Monte Carlo approach to approximate the null distribution of the Friedman
statistic  Sa, Sy and Sc¢ on incomplete designs discussed in Section 2. In this program, we
generate a design by first using the IMSL subroutine RNNOR to generate a complete set of
kn normal variates with common mean and unit variance, using then RNSRI to select which
cells are to have their data deleted in order to achieve the designated percentage missing
ranks. 20,000 designs are generated for %=4(1)6 , »=4(1)6 and missing percentage of 20(10)
60. The generated designs are completed according to the specified imputation scheme, the
Friedman statistics are calculated on each completed design. The simulated null distributions

are presented in Table 4. From this table we note that tests based on Sj) and S¢ lead to

similar critical values, which will be evident in the closeness of the powers.
4. An Example

We illustrate three procedures discussed in this paper by applying them to a subset of the
incomplete repeated-measures data set considered by May and Johnson (1995) to evaluate the
effect of four different drugs (A, B, C, D) on blood coagulation times (in minutes). This data
subset of coagulation time is presented in Table 1. To simplify our discussion and
calculations, we treat the missing observations for a subject in the May-Johnson data set as
if they would have corresponded to the larger ranks for that subject.

Table 1. Blood Coagulation Data

Subject A B C D
1 1.24 2. 11 1.19 1.63
2 1.06 - 1.57 --
3 -- - 1.34 1.59
4 1.47 -- -- 1.79
5 1.58 1.92 1.85 1.61

Under the assumption that the missing observations would be associated with the larger ranks
for those subjects, the corresponding set of incomplete within-subject ranks in presented in
Table 2.
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Table 2. Incomplete Ranks for the Blood Coagulation Data

Subject A B C D
1 2 4 1 3
2 1 -~ 2 -
3 - - 1 2
4 1 -- -~ 2
5 1 4 3 2

The Friedman statistic calculated using the average ranks imputation on the Table 2 is Sg4

=6.72. With #»=5, k=4 and 30 % missing percentage, we find from Table 4 the approximate
critical values for S4 are s,(a@,5 4)=6.900 and 5700 at @=0.05 and @=0.10, respectively, so

there is a significant effect on blood coagulation at only @=0.10. The rankings using the
summing ranks imputation are the same as those using counting ranks imputation as the
following Table 3 :

Table 3. Completed Ranks using Summing or Counting Ranks Imputations

Subject A B C D

gos W N -
DT N
[T R A
N o NN W W

The Friedman statistic Sy (or S¢), calculated on this Table 3 is 9.96, which is above its
critical value s,(a, 5 4)=9.000 (or s.(a, 5 4)=9.000)) for @=0.05. So we conclude that the four

drugs exhibit significantly different effects on blood coagulation at =0.05.
5. Monte Carlo Simulation Comparison

For our Monte Carlo study of relative powers of these three procedures based on the

Friedman statistic Sy Sy and Sc, we consider two incomplete designs with an equal number

of objects and judges, corresponding to k2=n=4 and k=n=6. To generate appropriate
incomplete rank data for the study as in Section 3, we first use the IMSL routine RNNOR to
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generate normal random variates with common variance 1 and means 6,,08,,...,8,

corresponding to ‘differences’ in the objects being ranked and the RNSRI is then used to
achieve a data set with 30 % and 50 % missing ranks. 10,000 incompleted designs are
generated to obtain the simulated power estimates for these procedures in Table b. The
powers in parentheses for the Sjs-test are ones obtained when the test is taken to the

Friedman tables in Hollander and Wolfe (1973) instead of its simulated critical value table in
Table 4. Several conclusions can be drawn from the these simulation results.

First, as expected the powers for each tests increase as the alternative gets further away
from the null hypothesis. Also as the missing percentage gets large from 30 % to 50 %, the

powers decrease slowly. Secondly, S,4-test has smaller powers that other Sy and Sc-test,
and Sytest and Sc-test have almost the same power. It is not surprising that since Sy
-test and Sc-test use the information from the judges who have all ranks specified in the

assignment of unused ranks, while S,-test ignores such information. Finally, S4-test when

it is taken to the existing Friedman table is very conservative and its power is considerably
lower than that using the presented approximated critical values.

6. Other Applications

In this paper we discuss three procedures based on the Friedman statistics completed under
these respective rank imputation schemes to test for general alternatives on an incomplete
two-way rank design. However, these procedures could be applied to other settings not only
for ordered alternatives with the Page (1963) statistic and umbrella alternatives with an
appropriate test statistic but also for multiple comparison to detect which particular objects, if
any, differ from one another.

For the most part, we illustrated our procedures with judges’ ranking that are missing only
the top ranks. However, these procedures are also applicable to the setting that a judge may

be able to determine the 4, least preferable and A, most preferable objects, ranking these

objects from 1 to &k and k—Ay+1 to A
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Table 4. Approximate critical values for S4, Sy and S¢

n k  missing( %) a Sa Su Sc
4 4 20 0.05 6.300 8.400 8.400
0.10 5.400 7.500 7.500
30 0.05 6.225 8.700 8.700
0.10 5.175 8.100 8.100
40 0.05 6.525 8.400 8.400
0.10 5475 8.100 8.100
50 0.05 6.300 9.300 9.300
0.10 5.100 8.100 8.100
60 0.05 5475 9.225 9.225
0.10 4125 7.800 7.800
4 5 20 0.05 8.400 9.400 9.400
0.10 7.250 8.250 8.200
30 0.05 8.200 10.000 10.000
0.10 7.050 9.000 9.000
40 0.05 7.750 10.600 10.600
0.10 6.650 9.400 9.400
50 0.05 7.400 10.750 10.750
0.10 6.350 9.650 9.650
60 0.05 6.600 12.350 12.350
0.10 5.650 11.000 10.850
4 6 20 0.05 9.750 11.429 11.286
0.10 8.536 10.143 10.000
30 0.05 9.679 11.857 11.857
0.10 8.393 10.536 10.429
40 0.05 9.214 12.250 12.250
0.10 8.036 11.000 10.964
50 0.05 8571 13.393 13.429
0.10 7.429 12.214 12.143
60 0.05 7.750 14.714 14.464
0.10 6.679 13.429 13.107
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Table 4. Approximate critical values for S4, Sy and S (continued)

n k missing( %) a Sa Su Sc
5 4 20 0.05 7.140 8.280 8.280
0.10 5.880 7.080 7.080
30 0.05 6.900 9.000 9.000
0.10 5.700 7.380 7.620
40 0.05 6.540 9.720 9.960
0.10 5.400 8.760 8.760
50 0.05 5.940 10.680 10.680
0.10 4980 9.240 9.240
60 0.05 5.580 9.420 9.720
0.10 4620 8.100 8.100
5 5 20 0.05 8.440 10.400 10.240
0.10 7.160 9.080 8.960
30 0.05 8.280 11.040 11.040
0.10 7.000 9.600 9.440
40 0.05 7.960 11.680 11.680
0.10 6.760 10.240 10.240
50 0.05 7.360 12.160 12.160
0.10 6.200 10.840 10.840
60 0.05 6.680 13.720 13.480
0.10 5.640 12.560 12.360
5 6 20 0.05 10.114 11514 11.400
0.10 8.771 10.029 9914
30 0.05 9.886 12514 12.429
0.10 8.514 10.943 10.829
40 0.05 9.400 13.000 13.114
0.10 8114 11.486 11.514
50 0.05 8.800 14.743 14.686
0.10 7.486 13.314 13.229
60 0.05 7.686 16.829 16.571

0.10 6.571 15.286 15.086
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n k missing( % ) a Sa Su Sc
6 4 20 0.05 6.750 9.350 9.400
0.10 5.650 7.800 7.800
30 0.05 6.650 9.800 9.800
0.10 5.450 8.400 8.400
40 0.05 6.450 11.000 10.800
0.10 5.400 9.000 9.000
50 0.05 6.050 11.400 11.600
0.10 5.050 9.800 9.800
60 0.05 5.700 10.350 10.350
0.10 4.850 8.750 8.750
6 5 20 0.05 8.767 10.267 10.267
0.10 7.333 8.800 8.667
30 0.05 8.433 11.333 11.200
0.10 7.100 9.733 9.600
40 0.05 8.033 12.400 12.267
0.10 6.833 10.667 10.533
50 0.05 7.567 12.967 12.933
0.10 6.433 11.300 11.233
60 0.05 6.633 15.000 15.033
0.10 5.633 13.700 13.700
6 6 20 0.05 10.190 12.095 11.905
0.10 8.690 10.476 10.286
30 0.05 9.881 12.952 12.952
0.10 8.476 11.238 11.238
40 0.05 9.595 13.810 13.714
0.10 8.190 12.000 11.905
50 0.05 8.762 15.881 15.762
0.10 7.524 14.214 14.119
60 0.05 7.690 18.833 18.548
0.10 6.548 17.143 16.857
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Table 5. Monte Carlo Power Estimates

91 02 93 04 (95 06 missing( %) «a SA SM Sc
(n, k)=(4, 4)

0. 0. 0 O 30 0.05 0.048 (0.021) 0.059 0.059
0.10 0.110 (0.048) 0120 0.122

50 0.05 0.050 (0.012) 0.068 0.068

0.10 0.099 (0.051) 0.130 0.130

0 1 2 3 30 0.05 0.138 (0.070) 0192 0.192
0.10 0251 (0.138) 0.2908 0.317

50 0.05 0.062 (0.022) 0.080 0.080

0.10 0.111 (0.063) 0.170 0.170

0 1 4 & 30 0.05 0.164 (0.145) 0.321 0.321
0.10 0351 (0.165) 0.383 0.4l11

50 0.05 0.065 (0.033) 0.095 0.09%

0.10 0.120 (0.063) 0.187 0.187

(n, k)=(6, 6)

0. 0. 0 0 0 O 30 0.05 0.050 (0.027) 0.051 0.050
0.10 0.102 (0.070) 0.104 0.100

50 0.05 0.053 (0.014) 0.054 0.052

0.10 0.106 (0.040) 0106 0.104

0. 1 3 5 7 49 30 0.05 0.457 (0.354) 0.490 0479
0.10 0.590 (0.509) 0613 0.605

50 0.05 0.142 (0.048) 0.128 0.123

0.10 0.221 (0.109) 0.209 0.199

0. 1. 4. 8 12 16 30 0.05 0477 (0.370) 0508  0.499
0.10 0604 (0528) 0.631° 0.620

50 0.05 0.134 (0.048) 0.125 0.121

0.10 0.218 (0.115) 0215 0.201




