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An evaluation of the Mantel-Fleiss validity criterion
for the Mantel-Haenszel statisticl)
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Abstract

In testing the partial association between two variables after controlling for the S
levels of a third factor, the Mantel and Haenszel (1959) statistic is often used. Since
the statistic is based on the asymptotic distribution of the sum X of S
hypergeometric variates, a guideline for the minimum requirements for the application
of the statistic is useful. Mantel and Fleiss (1980) developed a criterion based on the
guideline for the Pearson’s X % statistic. The criterion requires the distance from the
expected value to the closer bound of X to be at least five.

The Mantel-Fleiss (MF) criterion was studied through a simulation using the
hypergeometric sampling scheme. The criterion is not satisfactory. The size of
statistic exceeded nominal 0.05 level nearly 1/5 of the cases even when the criteion is
met. However, the results show that the statistic is much more unstable and
conservative when the criterion is not met.

1. Introduction

In many areas of health research, variables often contain only two categories and the
relationship between two such variables is of interest. In such case, the resulting data can be

summarized in a 2X2 table. The association between the two variables can then be tested
using Pearson's chi-square statistic X 2 or the likelihood ratio statistic Gz, both of which
have asymptotic chi-square distributions with one degree of freedom (x:f) if the null

hypothesis of no association is true.
Quite often, the relationship between the two variables is affected by other factors that are
referred to as intervening factors. In the presence of such factors, the analysis carried out

using the classic X 2 or G? statistics can be misleading. For example, consider a

1) This research was supported in part by the National Cancer Institute grant CA39065.

2) Lecturer, Dept of Computer Science and Statistics, Dongshin University, Naju-shi, Chonnam 520-714,
Korea

3) Professor, Dept of Preventive Medicine and Environmental Health, University of Iowa, Iowa City, Iowa
52242, US.A.

- 265 -



266 Younghae Chung and Charles S. Davis

multicenter clinical trial where the effectiveness of a new treatment is compared with the
standard treatment with respect to some outcome of interest that is measured on a
dichotomous scale. Since the patient populations may be different among the centers, this
difference needs to be taken into consideration in order to assess the true treatment-response
relationship.

The resulting data can be summarized in S 2X2 tables, where S is the number of
centers. For testing the average partial association between the treatment and response
variables across the centers (strata), the Mantel-Haenszel (1959) statistic is commonly used.
Under the hypothesis of no association between the treatment and the response in any of the

strata, the statistic has an asymptotic x% distribution.
Of the N, subjects from the 7th center, suppose #; subjects receive the new treatment

and % subjects receive the standard treatment. Let a; and c¢; denote the number of

subjects with favorable response to the new and standard treatment, respectively (see Table

1). We assume the total sample size N, and the row margins #, and #; are fixed.

Mantel and Haenszel (1959) proposed a statistic for testing the partial association using the
hypergeometric probability model given fixed row margins and the number of favorable

outcomes. Their test statistic is based on the distribution of X= i‘a ;» conditional on the
=

row and column margins. Since each a; has a central hypergeometric distribution under the
null hypothesis, the expected value and the variance of a; are

i1 M3

n U EURRUE]
E(a,)= z
H Ni

N?(Nl—]-) ’

and Var(a, =

and X has expected value E(X)= g E(a;) and variance Var(X)= gl Var(a;). When

Table 1 Layout of the 2X2 table for the ith stratum

outcome
Treatment group Success Failure Total
Treatment a, b, n i
Control c, d, g

Total m i m 2 N,
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N; is large, a; tends to normality. Even when N, is as small as 2, the sum of the a;

values is asymptotically normally distributed from the central limit theorem for large S

(Birch, 1964). The Mantel-Haenszel statistic, without continuity correction is

x2 _ (X—EQ)?

The statistic has an asymptotic x% distribution when the null hypothesis of no association is
true. When all N; are large, the term N;—1 in the denominator of the variance can be

replaced by N,. In this case, X ZMH is identical to the square of the statistic proposed by

Cochran (1954). His test criterion, which is based on the assumption of independent binomial
sampling, for testing the null hypothesis of no difference in success probabilities between the
two binomial samples in any of the tables is the ratio of a weighted average difference of the

proportions to the standard error. But only the MH statistic is appropriate when the N; are

small (Birch, 1964). When there are only 2 subjects in each stratum, as in a matched
case-control study, the MH statistic is equivalent to the large sample test statistic proposed
by McNemar (1947).

The wvalidity of the chi-square approximation to the MH statistic has not been studied
extensively. Even the results from the limited number of studies conducted on the
small-sample properties of the MH test are conflicting. Considering several small tables (e.g.,
N;=10 and 15 for S=23), Bennett and Kaneshiro (1974) reported from a simulation study

that the MH statistic has significance levels close to the nominal .05 and .01 levels, and thus
demonstrated the appropriateness of the normal approximation for the table configurations they
considered. The MH test was also shown to maintain its size and power by O'Gorman,

Woolson, Jones and Lemke (1988), where tables as small as N;=4, 8 and 16 were

considered. The table configurations Bennett and Kaneshiro (1974) considered were further
studied by Li, Simon and Gart (1979) who demonstrated instability when the success
probabilities are close to zero or one. Results similar to Li et al (1979) were reported by
Bennett and Underwood (1970) on the matched-pair design. However, no definitive guidelines
are found from these studies.

Concerning the validity of the chi-square approximation to the distribution of the MH
statistic, Mantel and Fleiss (1980) developed a criterion, based on the commonly followed

guideline for the classic Pearson’s X 2sta’cistic, that the smallest cell expectation should be at
least 5. They noted that this guideline allows the expected value of the (1,1) cell entry in a
2X2 table to vary by at least 2 standard deviations in either direction. To ensure E (X) to

have enough variability, Mantel and Fleiss observed that the guideline be relative to
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X=‘= a;, not relative to the individual a;. Let (a;),=max(0, m;—ny) and

(@a;))y=min( n 4, m,;) be the lower and upper bounds of the hypergeometric variate from
table #, respectively. Then the lower and upper bounds of X =2ai are

L=2Ya) =2 max (0,my—np) and U=2Ya;)y=22min(n, ,m;), respectively.
The Mantel-Fleiss (MF) criterion for the chi-square approximation requires that
R=min( E(X)—L, U-— E(X)) be at least 5.

For the special case where there are only two subjects in each table, as in matched pair
studies, the MF criterion is much less strict than the usual criterion that is applied to

McNemar’s test. A commonly used guideline for McNemar's statistic is based on the
criterion for the normal approximation to the binomial distribution (Rosner, 1986, p. 335). The

normal approximation can be used when #pg=5 or # =20 in this case, since p=g=.5.
If we were to follow the criterion suggested by Mantel and Fleiss, #= 10 would be sufficient
to give enough variation to the expected value of X. It is interesting to note that McNemar

(1947) also suggested the use of the chi-square approximation when #, the sum of
informative discordant cell frequencies, is at least 10.

2. Methods

A simulation study was carried out to investigate the appropriateness of the MF criterion

for the validity of the asymptotic x% distribution of the MH statistic. Since the asymptotic

distribution of the X ZMH statistic was developed under the assumption of fixed row and

column marginal distributions in every 2X2 table, the validity of the criterion was studied
under the null hypothesis using a hypergeometric sampling model. Random variables a;
were generated from the hypergeometric distribution. A random number generated from a
uniform (0, 1) distribution was transformed to a discrete uniform random integer in the range

{1, U-L+1], where U and L are the maximum and minimum possible values of a; for a

given fixed total N;, with fixed row margin #; and fixed column margin m;. This

random variate was then converted to a hypergeometric variate using the alias method
(Kronmal and Peterson, 1979). The remainder of the cell entries were determined from the
marginal distributions.

It was possible to generate a complete set of S independent hypergeometric variables at
the same time because the row and column marginal distributions remained constant in all S

tables. The minimum and the maximum possible values as well as the expected values were
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Table 2 First marginal totals {( #,; or m ;) considered
in the simulation study

Number of Subjects in Each Stratum

Margin type 2 3 4 5 6 8 10 15 20
B* 1 1 2 2 3 4 5 7 10

U 1 1 1 2 2 3 5

VU 1 1 2 3

* B: Balanced margins: Integer of ( N;/2)
U: Unbalanced margins: Integer of ( N;/4)
VU: Very unbalanced margins: Integer of ( N;/6)

determined as soon as the margins were set. To ensure sufficient variability in the values of
the statistics, only table dimensions with at least 10 possible values of the statistic X were

considered for the simulation. This constraint was reflected in the table dimensions.
The table dimensions considered in our simulation study involved three factors:

(1) nine sample sizes for each of the S tables: N;=2, 3, 4, 5, 6, 8, 10, 15 and 20.
(2) three row and column marginal distributions (% ;/N; and m ;;/N;): 1/2, 1/4 and 1/6.

These marginal distributions were chosen such that they would represent balanced,
unbalanced, and very unbalanced marginal patterns. Even though the total sample size

N ; cannot be assigned equally to the two row margins when it is odd, the row margins
with (N;—1)/2 were considered as balanced for the purposes of tabulation. When the
sample size was small ( N,;=2 or 3), only the balanced margins where #n;=1 were
considered. For medium sample sizes ( N;==4, 5 or 6), the balanced and the unbalanced

margins (1/2 and 1/4) were considered. All three marginal distributions, balanced,

unbalanced and very unbalanced margins, were considered for larger sample sizes ( N;=

8, 10, 15 or 20). When two marginal totals are the same, only one was considered as in
N ;=6, where both 1/4 and 1/6 yield #,=1. Since the rows and the columns are

interchangeable, only distinct combinations of marginal patterns were considered. For

example, for N;=6 a balanced row and unbalanced column marginal pattern was the

same as an unbalanced row and balanced column marginal pattern. Thus only the
balanced row and unbalanced column marginal pattern was considered. In this case,

there were three types of marginal patterns. For N;=8 and above, six types of

marginal patterns were considered.
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(3) ten possible values for the number of strata: S=5 for N; =4, S$=10, 15, 20, 25, 30,
40, 50 for all N,‘, and S=75 and 100 for N,S4

The first marginal totals (%, or m ;) considered for different margin types are shown in

Table 2. For each combination of table configurations 10,000 replications were generated.
The algorithm of Marsaglia, Zaman, and Tsang (1990) was used to generate the required
uniform random numbers. Marsaglia et al reported that this generator had passed all of the
stringent tests for randomness they considered and that it has a very long cycle length
(2). This random number generator was chosen because it was the fastest among three
random number generators we tested.

The size was determined by the proportion of the replications that exceeds the 95th

percentile of the reference distribution, le in this case. Since the data are generated under

the null hypothesis, we expect the size to be close to the nominal 0.05 level. Following
Cochran’s suggestion (see Upton, 1982), it is considered to be acceptable if the size of the
test exceeds the nominal level by less than 20%. Thus, in this case, it is considered to be
acceptable if the size reported is less than 0.06.

3. Results

The MF criterion for the chi-square approximation of the MH statistic requires the distance
from the expected value to the lower and the upper bound of X to be at least five. Since

the criterion only depends on the specifications of the table configurations, ie., S, N;, njh
and m;, the MF criterion is either met or not met in all of the replications with the same

table dimensions. As we limited our consideration to the table dimensions where there are at
least 10 possible values of X, most of the balanced row and column margin cases met the

MF criterion. The two that did not meet the MF criterion were (S=10, N,;=3) and
(S=5, N,=5), where the margins are not exactly N;2. When one of the margins is

balanced, the tables meet the criterion except one, where the marginal total is not even, in
both cases. The number of table configurations where the MF criterion is not met increases
as the margins become more unbalanced. When both margins are very unbalanced, more than
half of the table configurations considered did not meet the criterion. It is expected because
when the margins are not balanced, the distribution is skewed and the distance from the
expected value to the closer bound is short.

Figure 1 shows the plot of the size of the test against the distance R when the continuity

correction is not employed. For plotting purpose, the logarithm of R is used. If the criterion
were valid, most of the points are expected to fall below the reference bar (size=0.06, 20%
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above the nominal level) when R is greater than 5, or log5) 1.603. The plot shows,
however, that many of the points fall above the reference bar even when the MF criterion is
met (right side of the reference bar). Note that the statistic is more unstable when the
criterion is not met — the minimum was 0.0164 and the maximum was 0.1033, while the size
ranged from 0.0195 to 0.0875 when the criterion is met. Also, it appears to be more
conservative — the average size was 0.0402 when the criterion is not met, compared to 0.0478
when it is met. It is only after R is as large as 80 ( logR =44) when all of the sizes
become smaller than 0.06. The criterion appears to be too liberal.

<Figure 1> about here.

Table 3 summarizes what is shown in figure 1. Whether the criterion is met or not, more
than 17% of the table configurations have size above 0.06, i.e. unacceptable. The MF criterion
does not seem to work adequately.

Interesting results were found when the continuity correction is used (Figure 2). All of the
table dimensions give size below nominal 0.05 level even when the criterion is not met. In
fact, the statistic is far too conservative when the criterion is not met.

<Figure 2> about here.
4. Conclusion and Discussions

The MF criterion for the chi-square approximation of the MH statistic was empirically
evaluated. The criterion was not met in 41 of the 276 (14.9%) table configurations considered
in the study. Whether the criterion was met or not, the proportion of the table configurations
where the size exceeding 20% of the nominal 0.05 level (size > 0.06) was almost 20% —
17.1% when the criterion is not met and 19.1% when it is met. When the criterion is not
met, however, the statistic was much more unstable and conservative.

Table 3 Proportion the size exceeding 20% of the nominal 0.05 level
(uncorrected) by Mantel-Fleiss criterion

Size of the test

MF criterion < 0.06 > 0.06
not met
82.9 17.1
( n=41)
met
80.9 19.1

( n=235)
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The MH statistic with continuity correction is known to be conservative. It never gave
size larger than 0.05 in this study. That means the criterion is not needed for the corrected
statistic.

Regardless of the usage of the continuity-correction, the MF criterion does not seem to be
discriminating the cases where the approximation is valid. This study leads to the conclusion
that we need a better criterion.

There are some limitations in this study. We considered only table configurations where
there were more than 10 possible values for X. Smaller tables need to be investigated for a
better understanding. Also, we suggest another study based on the independent binomial
sampling scheme since the MH statistic is the same as the square of Cochran’s statistic.
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Figure 1. Size of the statistic (uncorrected) by logR. R=min( E(X)—L, U— E(X))
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Figure 2. Size of the statistic (corrected) by logR. R=min( E(X)—L, U- E(X))



