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Abstract

This research aims here to develop a certain extended double sampling plan,

EDS*, which is an extension of ordinary double sampling plan in the sense that the
second-stage sampling effort and second-stage critical value are allowed to depend on
the point at which the first-stage continuation region is traversed. For purpose of

comparison, single sampling plan, optimal ordinary double sampling plan( ODS*) and
sequential probability ratio test are considered with the same overall error rates,
respectively. It is observed that the EDS® idea allows less sampling effort than the
optimal ODS.

1. Introduction

Determining or adjusting second-stage sample size and critical region based on first-stage
outcome constitutes an extension of classical double sampling plans as originally proposed
(Dodge and Romig(1941)) and subsequently developed(Hald(1975) and Spurrier and
Hewett(1975)). In this study, we consider double sampling plans with variable second-stage,
that is, at the end of the first-stage an interim analysis is performed with the objective of
deciding whether or not to continue the study based on results of the interim analysis. If the
study is continued, the first-stage information is systematically put to work in conducting the
second-stage, including its sample size and critical region, with the goal of achieving
agreed-upon overall, as well as stage-specific operating characteristics. Where the proposed
approach differs from previous work is in our casting of the design of extended double

sampling( EDS) plans in the form of constrained optimization problems. The constraints of
the optimization problems borrow from ‘‘group sequential’’ formulations idea of '‘allocating’’
error between the two stages; indeed we go beyond the usual group sequential formulation in
that both the errors of the first and of the second kind are so allocated. The objective
functions for optimization problem borrows from Bayesian analysis the feature that a certain
average of measures of sampling effort is minimized.
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Section 2 provides the formulations of EDS plan and details their optimization. Section 3
develops three plans alternative to EDS*. These include the single sampling(SS) plan for
testing g, against #,, the sequential probability ratio test (SPRT) for testing g, against

/1, and the optimal (with respect to first-stage sampling time) ordinary double sampling

plan ( ODS™") with overall error rates @ and B equally allocated between the two stages,
as in EDS" derived in section 2.
Section 4 compares the four plans SS, ODS*, EDS™ and SPRT, and discusses certain

methodological features of EDS®, and of a certain possible alternate version of it.

2. The plan EDS®*: Detailing the optimization

We have chosen to initially study the analytically tractable Wiener process (Kac(1959))
which, of course, is relevant to the case of normally distributed measurements, and, by the
arcsine transformation, to the binomial case. Specifically, we consider discriminating between

the Wiener process with drift parameter x and the Wiener process with drift parameter

t1, 21 > tp. In either case, we assume a unit scale parameter.
The discrimination is to be based on a two-stage procedure with initial sampling time
T and continuation interval, [/, #]. At time T,, u,(respectively, #,) is to be accepted

if the process exceeds wu (respectively, below [). Further, if the process equals an

intermediate value s at time T, / < s < %, then a predetermined second-stage sampling
plan is implemented, with sampling time 7T ; and critical value % depending on s. Thus our
plan is determined by three numbers (T, /,u), and the two functions T, and £,
[ <5< u

Predetermined overall error rates @ and B (of the first and second kind) are equally
allocated between the two stages. Under this restriction, the plan ( Ty, [, u, {T I<s<u},
{k, I<s<u}) is to be chosen in such a way as to minimize a certain average "AST, the
unweighted average of expected sampling times for the values of x, AST,, between

and ;.



Hybrid Group-Sequential Conditional-Bayes Approaches to the Double Sampling Plans 109

Hi
AST= ( p,— #0)—1f# AST, du @D

where
— Ty

AST To-l-f——ﬂv==exp[ 1( \f— ) 1ds.

Now, we give an account of the manner in which we identify the optimal extended double
sampling plan by minimizing the objective function (2.1), in the case of parameter values

(a, B, ¢, 1) equal to (0.05,0.10,0,0.50).
We begin by fixing first-stage sampling time 7 such that the first-stage error rates

are @/2 and B/2. This determines a continuation interval, [/, %]. Given T, [ and u, we

— 2
then minimize AST (or, equivalently, AST( )= AST — T, subject to the restriction

that the second-stage error rates equal @/2 and B/2. This minimization is with respect to

the second-stage sampling time function 7T, / < s < % , and second-stage critical value
function kg, [/ < s < u.

For given T, and k|,

M u
ASTP= (pr=wo) ' [ 1 f, sluTo.V To) - T, dsld 22

where @(sluT o,V Tp) is the normal density with mean g 7Ty and standard deviation

V Ty. Interchanging the order of integration, the restricted minimization of (2.2) is explicitly

given in the form :
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minimize (r ), (.}

[Cpr= o)+ Tol 7 [To(-—2

subject to

T°‘s)—¢(”T°7“’J—S>]-TSds

T, Ty

Jr#st o ToNTo) [ 90l o TV Tddeds = a2

u ks
and [ #(sl 1 To VT [ ¢xl 1 TN T Ddeds = B2

where O(y) = f_yootﬁ(xlﬂ,l)dx.

We implement this restricted minimization by subdividing the continuation interval

[Z, u], as determined by the first-stage sampling time 7T, into a grid of 2 grid points,

o u=D L 3u=D (u=D

971 o rF1 > e, U— 9 7L - In view of this appropriate value 7

which provides a sufficiently accurate approximate formulation could be determined and our

problem is recasted as follows with m = 27 :

minimize {Ti);”=1,{ki)"‘”=lﬂ Tl,"', Tm,kl, "',km) (2.3)
subject to  go(T1, ", T, k1, k) —al/2=0
and g(Tq1, ", Twky, k) — B/2=0.

We address this problem via a standard Kuhn-Turker argument (see for example,
Ko(1994)) involving the Lagrangian kernel

L(T,k;Po.Pl)zf(T, k) + Po‘go( T, k) + 91'g1( T, k)

= 121[ 7.T: + 00 8T k) + 01°-8(T; k)]

= Zlhi(Ti’ki),

where T=(T,,,T,) and k= (ky, -, k).

The Kuhn-Turker argument for solving (2.3) now proceeds as follows :
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Denote the 2 m-dimensional vector ( T, 2) by x, and observe that x* will minimize
A x), subject to go( x)—a/2=g(x)—B/2=0 if o =(pgy,0]) can be found,

—o < pg, p1 < ©, such that

(1) x° minimizes L(x, p*) over range (2.4)
0 < T, —o0 K k;<00; §=1,2,,m

(2) gl x)—al2 = g4 x*)—3/2=0.

The search for x° is made feasible by the following two features of the problem :
First, the classical first-order Lagrangian formulation, based on differentiating the

Lagrangian kernel L, provides candidate values for (ps , 0 T), for the 2m values
{T:}7, and {k;}7,, so that our Kuhn-Turker analysis merely provides verification; the
candidate values are iteratively derived in the following steps: i) identify a trial pair
0o, P15 ii) for each ¢, obtain two relations for (7;, %k,), by setting the two
derivatives of the ensuring 2 {T;, k;), with respect to 7T ; and k;, equal to zero; iii)
for each ¢, obtain trial values for ( 7';, £;), by solving these two relations; iv) using all 2 m
trial values, check the two restrictions of (2.3); if these are not satisfied to within sufficient
accuracy (six decimal figures in our case), select new trial pair ( oy, @ 1). The pattern of
discrepancies developed after several iterations allows achieving the desired accuracy, and
hence identifying a candidate (0g,0)), and simultaneously, candidate 7 ;"and &;”, in
manageable time.
Second, given (0p,01) and T7 and k;, the additive separability of our objective

function allows verifying (2.4) by sufficient condition that, for each i, 2 {T;, k;) is indeed

minimum at (77, k7). It remains only to detail those minimization. To that end, the

following lemma is useful.

Lemma Suppose that both 03 and ©; are positive. Then, for fixed T,
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hi(Ti»k(Ti)) < h,'(Ti,k,-), —o00  k; { oo, where

ln( pO)

_Motayy oo _
k(Ti)—( 9 ) (T,+T0) [3+ (” —u )]

Proof -
In the purpose of the proof, we delete the subscript ¢.
Setting the derivative of A( T, k) with respect to % equal to zero yields the relation

0,9(sl ﬂlTo,\/To)fﬁ(k( DIy, TV = 00d(sl o Ty, m)¢(k(ﬂ| po T,V ). (2.5)
Further, the derivative % ( T,k) of h(T, k) with respect to &, evaluated at k(T)+38,

6 > 0 equals

p18(sl 1 To, VT)HKKTD)+8l T, VT —p000(sl 1o Ty, \/——)¢(k(T)+6l;10T, V1)
— 0180l 41 To, VTDHKD] 1T, ¥ Dexpl— (B + 837 exp(6 1,9 D)

— 0085l 10 To VT K DI g TV T) exol - <7k§ﬂ+ ) exn(6 uoV D)

— 01806l ToV TSR D 1y T,V Ty exnl — (L + 2] (exp(8 1V D~ exp (6 oV T))

> 0,
where the last equality follows from (25), and the inequality follows from g, > .

Finally, an analogous argument shows that % (T, &) < 0 for & = KT —
This completes the proof.

pa and p; being positive through(Ko and David(1996)), we are able to verify (2.4) for
each 7, by empirically verifying that AT, k(T;) is minimized at 7T ;°, with
KT =k

It is possible to carry out the entire above program for certain range of 7 ¢~ values
(O,_Y—‘B). Unfortunately, TO is not largest possible 7 g-value for which it is possible to

satisfy our error restrictions. This is most easily seen by the fact that 7T is exceeded by
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the first-stage sampling time /fo of ordinary double sampling plans with largest possible
first-stage sampling time. However, the optimized 7TS—T',

call it now m TO), appears convex over (0,?0), and, in any event, achieves a
minimum over that interval, at an interior point To*. With /%, u*, {T;} =, {ki} =1,
the solutions found for T o= Ty, we call the plan (Tg,7%, u", {T;}L,, {ki}L)) the

optimal extended double sampling plan, EDS".

3. Alternative plans

The main procedures alternative to extended double sampling plans are single sampling
plans( SS), and ordinary double sampling plans( ODS ), and possibly sequential probability

ratio test( SPRT ) plans, though the latter typically are difficult to implement in practical
settings, which calls for developing group sequential(O’Blein and Fleming(1979), Pocock(1982))
approaches, specially in clinical trials.

3.1 Single Sampling Plan (SS)
The simplest sampling plan, single sampling, with error rates @ and £ at hypothesis

points ¢ and pq, is determined as follows for the Wiener process :

Pri¢(xdu T VT =k} = aand Prig(dp, TV T) < k=8 3.1)

The AST, of SS is the constant value 7T satisfying (3.1) and the OC, of SS is
given by the function Pr {qﬁ(yd;zT,m { k'Y of p, where k" satisfies (3.1).

3.2 Ordinary Double Sampling Plans (ODS)
We define such plans by fixing second-stage sampling time and critical value, ie, the

plans EDS without flexibility of second-stage. An unique ordinary double sampling plan,

ODS, with allocation of the two error rates @ and S to the two-stages, exists for all

first-stage sampling time 7o in (0, 7], where T is a value for first-stage sampling
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time that happens to exceed T, upper limit of first-stage sampling time for EDS™. It's

kind of obvious when we consider restrictions of two plans. The AST , and OC, function

of ODS"* are determined as follows for the Wiener process :

AST#: T0+J; ¢(SI,UTO,V To) * Tzds

3.2)
and

u u ks
0C, = [ $uToVTods+ [ ¢(sluToVTo) - [ [ ¢(eluT o,V Todrlds

where T, and ko satisfy

@ = [ #alnoTo N Tods+ [ #slioToV To) - L [, #(alaeaToV Tdidas
and

u ko
B = fiw¢(x|#1To,\/—T—o)dx+£ d(slp To,V Ty) * [f_m¢(x|ﬂsz»m)dx]dS-

AST , is computed according to (3.2) for all first-stage sampling times 7T in (0, /Tg],
and further first-stage optimization over (O, {f\o] gives minimum, Ta , also corresponding
. . s /\ /ﬁ - /\ .
continuation region ( /7, #") and the second-stage parameters ( T3, k3) to constitute

ODS”.

3.3 Sequential Probability Ratio Test (SPRT)
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The SPRT to be compared with EDS* is one with error rates @ and f, at
hypothesis point g and g ;. The standard SPRT theory for Wiener process gives the

following formulas for OC and AST :

(A-1)/(A- B) for p< p = (pot+p/2
oc, = l log(A)/[ log(A) —log(B)] for u= p
(1- B)J/(A- B) for > u

where A=A|2/l"(llo+/11)|, B=B|2#“(l‘o+#1)|, Az( 1_,8)/0 and BZ 3/(1—&’),

log(A) - (1-0C ) +log(B) - OC,

= for u# p
AST;, —_ (#1_#0)(#”‘ .U)
— log(B) - log(A) for p= 1
(1= ug)?

4. Comparisons and concluding remarks

As discussed in Section 2, we implement the minimization to derive EDS® by
subdividing the continuation interval into a grid of 27 equally spaced points. This was in
fact done for both » = 5 and #» = 6, and it was found that the computation yielded

essentially the same solutions. In view of this we decided that » = 6§ provided a
sufficiently accurate approximated formulation. Table 1 gives the second-stage sampling time

and critical value depending on equally spaced 27 grid points, s, in [I*,«"]. The comparable

plan oDS* has T, =19.9, T3 =22.01824, &3 =6.05654 and
[ 7%, %"] = [2.41260,8.74329] .

Table 1 : Optimal second-stage sampling time 7': and critical value k; in [/7,%"] for
T; = 18.9 and (a, 8. #y, #)= (0.05,0.10,0,0.50).
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sV T: kS s T: k:
2.34775 14.60943 7.15922 5.45857 22.49736 6.02038
2.44496 15.30639 7.23624 555578 2250024 5.92389
254217 15.92306 7.29320 5.65299 22.49214 5.82465
2.63939 16.47847 7.33484 5.75020 22.47308 5.72267
2.73660 16.98459 7.36416 5.84742 22.44310 561796
2.83381 17.44959 7.38319 5.94463 22.40217 551052
2.93103 17.87927 7.39340 6.04184 22.35029 5.40033
3.02824 18.27802 7.39587 6.13906 22.28741 5.28740
3.12545 18.64916 7.39144 6.23627 22.21350 517171
3.22266 18.99533 7.38077 6.33348 22.12846 5.05324
3.31988 19.31867 7.36440 6.43070 22.03225 493197
3.80594 20.64445 7.20978 6.91676 21.37886 4.28256
3.90316 20.85883 7.16616 7.01397 21.21251 414376
4.00037 21.05807 7.11876 711119 21.03371 4.00185
4.09758 21.24276 7.06771 7.20840 20.84217 3.85675
4.19480 21.41340 7.01316 7.30561 20.63755 3.70838
4.29201 21.57042 6.95520 7.40283 20.41945 3.55664
4.38922 21.71421 6.89394 7.50004 20.18742 3.40142
4.48643 21.84513 6.82945 759725 19.94095 3.24259
458365 21.96347 6.76182 7.69447 19.67942 3.07999
4.68086 22.06949 6.69112 7.79168 19.40215 291346
4.77807 22.16343 6.61739 7.888R89 19.10834 2.74280
4.87529 22.24551 6.54070 7.98611 18.79703 2.56776
4.97250 22.31590 6.46108 8.08332 18.46712 2.38807
5.06971 22.37475 6.37858 8.18053 18.11725 2.20339
5.16693 22.42221 6.29323 827775 17.74582 2.01332
5.26414 22.45841 6.20507 8.37496 17.35090 1.81737
5.36135 22.48344 6.11411 847217 16.92999 1.61493

1) s=1"+&/2,1"+3€/2,....u"— €/2 where & =(u"—1")/2°.
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note : OC, functions of SS, ODS*and EDS " coincide to within the third decimal place.
Figure 1 : OC, of SPRT,EDS", ODS” and SS, for the Wicner processes w(0,1) and
w(0.5,1) with (e, 8) = (0.05, 0.10).
As shown in Figure 1, the OC’s for all plans are essentially the same, with SPRT a bit

more discrimination than EDS™ between g, and g, and the reverse true elsewhere.

AST 40
y

Figure 2 : AST, of SPRT,EDS"*, ODS* and SS, for the Wiener processes o (0,1)
and (0.5,1) with (e, B) = (0.05, 0.10).
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The four AST functions shown in Figure 2 are strictly ordered, with the AST
function of EDS™ uniformly about 4% smaller than that of ODS”.
That the domination of ODS* by EDS® is uniform certainly is good news. The bad

news is that it is only by about 4%, suggesting a clear limitation to what can be achieved
with adaptive second stages. While the SPRT holds a substantial edge in AST over all
three other procedures, it is often hard to implement in practice as mentioned before.

On the other hand, AST reduction may not be the entire story. The possibility of
adjusting the second stage in response to the initial evidence may of itself have

methodological merit : EDS” possesses the feature that 7, is largest for values of s well
within the continuation region as indicated in Table 1, where, in other words, the first—-stage
evidence for discrimination between g, and g, is least conclusive. That feature can be
construed methodologically as adducing greater discrimination power when the initial returns

are inconclusive; or as adducing greater evidence for estimation gz when neither hypothesis is
likely to hold. On the other hand, we conjecture that, had we minimized not the average

AST of AST, over the interval [gg,x;], but rather had minimized AST-,

71 = (p ¢+ £1)/2, we would have found the reverse future; that is , we would have obtained
a plan with values of T, smallest for values of s well within the continuation region. That
alternative feature could be attractive to a researcher not willing to expend unnecessary

sampling effort in marginal situations. Thus, EDS®, beyond improving on ODS"* with
regard to sampling effort, may allow connection to the details of optimizing plan to broad
methodological considerations regarding the allocation of sampling effort.

It is further possible to consider other objective functions according to what the
researchers make plans for, for example, if a researcher would like to minimize the sampling
efforts on the alternative hypothesis point for some reasons, such as cost of experiments or

ethical merit in clinical trials, he could consider the expected sampling time for pg= g, ie,
AST,,. Also, it is equally possible to develop such designs for the other weights over
parameter space or hypotheses points and different allocations of error rates.

We have repeated the entire analysis for p; = 1, rather than p¢; = 0.5, and, as
expected, have come similar conclusions, regarding both the behavior of (T: . k:) and the

OC and AST functions. For the sake of completeness, the results for px; = 1 are

shown in Figures 3 and 4.
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0(:u 1.0
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031
0.71
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0.51
[X)
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0.2
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note : OC, functions of SS, ODS*and EDS * coincide to within the third decimal place.
Figure 3 : OC, of SPRT,EDS", ODS" and SS, for the Wiener processes w(0,1) and
w(1,1) with (e, 8) = (0.05, 0.10).

AsT 91
i

S8
[}

Figure 4 : AST, of SPRT,EDS"*, ODS" and SS, for the Wiener processes «(0,1)
and (1,1) with (e, 8) = (0.05, 0.10).
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