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Abstract

Once a contingency table is constructed, the first interest will be the hypotheses of
either homogeneity or independence depending on the sampling scheme. The most

widely used test statistic in practice is the classical Pearson’s xz statistic. When the
null hypothesis is rejected, another natural interest becomes which cell contributed to
the rejection of the null hypothesis more than others. For this purpose, so called cell

x2 components are investigated. In this paper, the influence function of a cell to the
x2 statistic is derived, which can be used for the same purpose. This function

measures the effect of each cell to the x2 statistic. A numerical example is given to
demonstrate the role of the new function.

1. Introduction

Contingency tables are well known summarized forms of catagorical data arising in many
fields of researches. In spite of those excellent advanced statistical techniques such as
log-linear model, correspondence analysis, the most widely used statistic is still the classical

Pearson’s xz statistic, since it is the easiest.

In an analysis of high dimensional contingency tables, log-linear model analysis may be
more appropriate, but most researchers are still slicing their tables and apply two-way
analysis. It's simply because they don’t have enough understanding of the theoretically
complex techniques. Confronting all these situations, the importance of the role of the classical

xz statistic can not be underestimated.

In an analysis of a two-way contingency table, the first interest will be a hypothesis of
independence between two categorical variables which the rows and colums of the contingency
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table consist of, or a hypothesis of homogeneity among rows of the contingency table,
depending on the sampling scheme.

The most popular statistic among reseachers for testing either of these hypotheses as a
null hypothesis is the Pearson’s xz statistic, the theory of which is well introduced in most
elementary statistical texts.

When the null hypothesis is rejected according to the xz test, the next natural interest

becomes which cells contributed to the rejection more than others. For this purpose, cell x2
components are used.

A cell xz compeonent is the square of the differences between the observed and expected
cell frequencies divided by the expected cell frequency, where the expected cell frequencies are
obtained under the null hypothesis. Irwin (1949), Kimball (1954), Kastenbaum (1960), and Kass
(1980) are among those researcher who were interested in xz statistic and its components.

“The idea of influence function is first introduced by Hampel (1974). Coock and Weisberg
(1980) used this technique in detection of outliers in regression. Critchley (1985) studied
influence in principal component analysis, and Campbell (1978) obtained some interesting
results on influence in discriminant analysis. Kim (1992) derived influence functions in
correspondence analysis, which has been extended to multiple correspondence analysis in Kim
(1994).

By applying Hampel's idea and treating the xz statistic as the trace of a multiplication of
matrices, which are obtained from the observed contingency table, Kim and Lee (1996) derived
the influence of an observation to the #° statistic as a function.

The result of Kim and Lee (1996) will be extended to derive the influence function of a

cell, instead of an observation, to the x2 statistic, which can be used for the same purpose as

the cell xz components.

2. Extension

Let N={n;} be an (IX]) contingency table with #; (i=1,--,I) being the i* row

total, n4; (j/=1,-,J) being the jth column total and # being the total frequencies in M.

Under the null hypothesis of independence or homogeneity, the expected cell frequency is
given by
Nit * Nyj

el]=—n_ » Z‘=]-7“.’I > j=1y“-’] ’

and the Pearson’s x° statistic is then

2
X2 : (n;—ey)
1=1j= €
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The estimated probability matrix F is obtained by dividing the entries of N by .
Let

ci=1,, 1 and  ¢;=

be the estimated marginal probabilities. Consider the two vectors 7r={7;} and c={c;}.
Letting D, and D, be diagonal matrices with 7 and ¢ as their diagonals, the x? statistic is
given by (Greenacre, 1984)
X% = ntracel D7 (P— v YD {(P—rch)Y . (1

We will regard the probability matrix F as known to derive an influence function. When F

is in fact an estimated probability matrix, the influence function is called an empirical
influence function, which is an estimated influence function. Of course, the latter will be the
one we can use in practice.

Define an (IXJ) random matrix Y so that its (7, 7)” element is 1 and others are 0

when a randomly chosen subject is classified into i* row category and j”’ column category.
Let Y have a distribution F, which is multinomial M(1, P). Now, we can see that the

probability matrix F is a functional evaluated on F. That is,

P=EY= f YdF . - @)

Also X° given by (1) is a functional evaluated on F, since X? is a function of F.
Given 7 and j, let y; be an (IX]) matrix where the (i7,J )" element is 1 and the
others are 0. That is, y, is a realization of the random matrix Y. To measure the influence

of an observation y; on X?= T(F), we use the influence function (IF) of Hampel (1974)

which is defined as :
IF(X?, yy) = lim[ T(F) — T(F))/e

where F.=(1—¢)F+¢&é,, is a perturbation of F by §,,, a measure with point mass one

at y;.
This influence function is derived in Kim and Lee (1996) as
Pi—ric; P;—r,c)’ P;— r,c)*
IF(Xz,y,-j)=2n——’——i—i (Pi—ric)* _=n (Pi—7ric)”
7iCj Yi = ricj Cj 1= 7iCj
Now, using the idea of perturbation by multiple observations introduced in Kim (1992), we

perturb F by 7,8, to assess influence of a cell to the x’statistic. That is, the perturbed F
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now becomes
Fe=(1—¢enp)F+en;d,,
Perhurbing F produces a perturbation of P, hence a perturbation of Xz, denoted Xz. The

influence of the ( i, j ) cell on X? can be measured by
IF(X?, ny) = lirrol[Xﬁ—Xz]/e . (3)

As in Kim and Lee (1996), we replace P, 7, ¢, D;!, and DZI in (1) with the

corresponding perturbations, P, , 7., ¢, , (D7Y), and (D;!), , with the subscript &

meaning a perturbation.
Similar algebraic manipulation as in Kim and Lee (1996) gives

P, = [ vaF,
=de[(1—en,j)F+ en;6,.]
=(1—en,) [ YdF+en; [ Yas,,
=(1—eny)P+enyy; ,

r. =P 1

=(1—enp)rtenyy:,

c. =P 1
= (1 - en,-j)c-i- ENGY;
where v, and y, are (Ix1) and (JX1) unit vectors with i and j” elements 1, and
P.—r.ct=(1—en)(P—rc)+ eny,;+ rc'— rvi— ;) + O(€?) .
Letting
M= D, (P—»")D; (P~ »c")'

gives the x2 statistic
X?=n trace( M).
The influence function given in (3) becomes
IF(X%, ny) = lim [n trace(M,) — ntrace(M)] /e (4)

where M, is the perturbed M.
Expanding M, gives
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M.=M+ en;(A,+ Ayt Az+ Ay) + O(e9)
where

A=— 71}— diag(y)(P— r D7 N P~ rch)’

Ay=D; v+ rc'— mi— y;c YD (P—rc')!

Ay=— 21,2— DY (P— rc')diag(y)(P— rch’

A,=D;Y(P— rct)Dc_l(yfj—i- cr'—yir'—cy) .

By Kim and Lee (1996), the influence given in (4) has the form
IF(X2, ny)=nF(X2, v;)
or more specifically
Pi—ric; _ My (Pi—ric)®  my & (Pi—7ic)?

IF(XZ,ni,-)=2nn,-,- yC y. & . A Y
iC ;)= ¥iC; C; 1= ¥iC;

(5)
This function measures the instantaneous rate of change in x2 statistic when a cell
frequency i1s doubled.

3. Numerical Example

Table 1 contains a 8X5 contingency table taken from Guttman (1971). It represents 1554
Israeli adults cross-classified according to their types of principal worries(rows), and countries
of origin(columns). The data are also used by Greenacre (1984) to illustrate correspondence
analysis, and by Kim and Lee (1996) to demonstrate influence functions of single observation
in contingency table.

The x2 statistic computed from this contingency table is 120.44, which leads us rejection
of the null hypothesis of independence.

Table 2 includes three entries, the difference between observed and expected cell
frequencies, the cell x2 component, and the evaluation of the influence function given by (5).
The third entry is in fact

2 1
IF(X,nz'i n+1 ’

which represents the estimated changes in xz statistic when a cell frequency is doubled.
As we can see from the table, those cells with large xz components such as cell (4, 1),

cell (6,4), cell (8,1), and cell (8,2), also show large values of influence function in
absolute sense. Note that the signs of the evaluations of the influence function conincide with
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those of the differences between observed and expected frequencies. When the difference is
positive, that is, observed frequency is larger than expected, the influence function value is

also positive, and vice versa. Of course, there are some reversed signs when the cell xz

component is very small. Our influence function tells which cells are causing the rejection of
the null hypothesis through its magnitude and why (observed frequency is less than or

greater than expected) through its sign, while the cell x2 component loses this second

property because of the squaring process. Note that the difference between observed and
expected frequencies should also be interpreted relatively to the expected frequencies.

Table 1. Principal worries of Israeli adults. Description of categories of variable B,
country of origin, is given at the foot of the table.

Country of origin (B)

Principal worry (A) 1 2. 3 4 5
Enlisted relative (1) 61 104 8 22 5
Sabotage (2) 70 117 9 24 7
Military situation (3) 97 218 12 28 14
Political situation (4) 32 118 6 28 7
Economic situation (5) 4 11 1 2 1
Other (6) 81 128 14 52 12
More than one worry (7) 20 42 2 6 0
Personal economics (8) 104 48 14 16 9

From Asia or Africa

From Europe or America

From Israel and their father from Asia or Africa
From Israel and their father from Europe or America
From Israel and their father from Israel

AN RN
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Table 2. Differencies between observed and expected frequencies, cell x2 components,
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and

O-E
cell »* 1 2 3 4 5
IF
0.64 2.84 -0.49 -091 -2.08
1 0.0068 0.0798 0.0288 0.0360 0.6103
-5.6364 0.4160 -1.7344 ~4.2922 -3.3655
1.49 2.19 -0.64 -2.00 -1.03
2 0.0324 0.0416 0.0426 0.1540 0.1331
~4.7670 -1.4157 -2.0826 -6.4224 ~-2.3808
-14.36 31.36 -3.67 -14.27 0.94
3 1.8529 52703 0.8603 48154 0.0677
-39.0425 55.0886 -7.1988 -23.0020 0.3738
-25.64 21.39 -2.11 6.12 0.34
4 11.4080 47377 0.5499 1.7133 0.0085
-35.0496 35.1522 -4.2810 9.8280 -0.7546
-1.73 1.39 0.19 -0.18 0.33
5 0.5245 0.2010 0.0462 0.0143 0.1585
-3.0560 2.1010 0.3317 -0.6474 0.8414
-5.62 -17.16 1.81 19.13 1.84
6 0.3643 2.0290 0.2690 11.1280 0.3342
-23.3766 ~42.7392 2.1140 52.0884 27720
-1.13 6.39 -0.97 -1.98 -2.48
7 0.0600 1.2283 0.3184 0.5079 24775
-5.6380 10.8486 ~1.6328 -4.0836 0.0000
46.36 -48.61 5.89 -5.88 2.33
8 37.2780 24.4560 4.2738 15781 0.7423
118.5600 -67.7520 13.9510 -16.1040 2.0016
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