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Scree Diagram for Detecting Multicollinearity and Estimating
Ridge Constant in Linear Regression Model

Dae-Heung Jang?

Ahbstract

When multicollinearity appears in linear regression model, we can use ridge
regression for stabilizing the regression coefficient estimates. We propose the scree
diagram as a graphical method for detecting multicollinearity and estimating ridge
constant in linear regression model.

1. Introduction
Linear regression model can be expressed in matrix notation as

y=XB+e oY

where y= (¥, ¥,*",¥,) is the vector of observed response, X is the nXp(p<n) model

matrix, 5 is the the px1 vector of parameters which appear in the chosen model, and
e=(ey, &y, *, €,) is the vector of random errors associated with y. Here, # is the number

of parameters in the model.
The vector of unknown parameters is estimated using ordinary least squares methods by

»=(X'X7'Xy 2)

The variance-covariance matrix of the estimated coefficients under the assumption that

e~(0,D is

Var(®)=A(X' X)L (3)
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Multicollinearity is a condition among the set of $ regressor variables in the model. If there

exists an approximate linear dependence between the columns of X, then we have the

condition usually identified as multicollinearity. When multicollinearity is present, (X'X)~!
exists but is ill-conditioned. Therefore, the presence of unstable regression coefficient
estimates arises. When multicollinearity appears in linear regression model, we can use ridge
regression as a means for stabilizing the regression coefficient estimates in the fitted model.

The purpose of this paper is to suggest the scree diagram as a graphical method for
detecting multicollinearity and estimating ridge constant. In Section 2, we propose the scree
diagram as a graphical method for detecting multicollinearity and estimating ridge constant. In
Section 3, we give a numerical example. In Section 4, we draw conclusion.

2. Scree diagram for detecting multicollinearity
and estimating ridge constant

Various techniques for detecting and repairing multicollinearity have been proposed. A
prevailing technique for repairing multicollinearity is ridge regression although there are some
criticisms(For example, see Draper and Smith (1981).). We can use ridge regression as a mean
for stabilizing the regression coefficient estimates in the fitted model. Hoerl and Kennard (1970
a, b) and, Marquardt (1970) have suggested problems associated with a ridge regression
estimator. Until quite recently, there are being many researches for ridge regression. The
ridge regression estimators for the parameters in the first order and in the second order
polynomial models are calculated using the formula

HE=(X'X+E)'X (4)

where % is a constant and usually 0<4&<].

From (4), the variance-covariance matrix of ridge regression estimator &(%), is

Valb(B)]=A(X' X+ kKD 'X' X(X' X+ kI)~! (5)
Let
V,= ﬁ’%’ﬂ“ﬂ — (X' X+ ED) XXX X+ D! ©6)

Then, from (6), we can execute the following spectral decomposition of V, ;

Viy=PAP’ (7
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where A is the diagonal matrix of eigenvalues of V, and F is the matrix of eigenvectors
of Vk-

There are several techniques to estimate 4. First, Hoerl and Kennard (1970b), Hoerl],
Kennard and Baldwin (1975), McDonald and Galarneau (1975), Hocking, Speed and Lynn
(1976), Lawless and Wang (1976), Wahba, Golub and Heath (1979), and Myers (1986) proposed
stochastic methods. These stochastic methods have all exploited response data. Therefore, # is
a random variable. Second, Tripp (1983, See Myers (1986).), St. John (1984), and Jang and
Yoon (1997) proposed nonstochastic methods. Jang and Yoon (1997) proposed the prediction
trace and the prediction variance trace as graphical tools for evaluating ridge regression
estimator in mixture experiments. These nonstochastic methods do not have exploited response
data. Therefore, % is not a random variable.

Using scree diagram (See Krzanowski (1988).), we probose a graphical method for detecting
multicollinearity and estimating ridge constant in linear regression model. Scree diagram is the

plot of th eigenvalue A, of V, against #¢=1,2,:-:,p). Through scree diagram with several
ridge constants, we can detect multicollinearity and decide the value of % If the condition

number of (X 'X)_l is very large, we suspect severe multicollinearity. We can see
approximately the degree of multicollinearity through secree diagram when £ is zero.

Condition number (See Cornell(1990).) is the ratio of the largest to the smallest eigenvalue,

A . . . . . .
A—l. As [k is increasing sequentially, eigenvalues are decreasing gradually. When this
P)

decreasing trend becomes weakened, we can decide the value of % This method is a method
for choosing % as a function of only the regressor data. Therefore, the choice of £ is

determined by the nature of the multicollinearity itself and % is not a random variable,
3. Numerical example

In mixture experiments, the measured response is assumed to depend only on the relative

proportions of the components present in the mixture. For mixture experiments, if we let x,

represent the proportion of the ith component in the mixture where the number of

components is ¢q, then

Z"‘lzl’

where 0<x,<1,i1=1,2,-",q.

The experimental region is a regular (g— 1)-dimensional simplex. When additional
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constraints are imposed on the proportions in the form of lower and upper bounds
0<L;<x;<UL1, where i=1,2,">,q, (8

the experimental region becomes a subregion of the simplex.
Typically, mixture models are of the Scheffé type where the first order model is

y= gﬁ,x,-+e

and the second order model is

y= Z\fori- 2%5’ XXt e

where 3 is observed response and € is random error. When the component proportions in
mixture experiments are restricted by lower and upper bounds, multicollinearity appears all too
frequently, Thus, we can use ridge regression.

Our example is taken from McLean and Anderson (1966). The purpose of the experiment

was to find the combination of the proportions of magnesium ( x;), sodium nitrate ( x5),
strontium nitrate ( x3), and binder (x,) for producing flare with maximum illumination.

McLean and Anderson (1966) suggested the 15-point extreme vertices design consisting of the
eight extreme vertices, the centroids of the six faces and the overall centroid of the region
along with the flare illumination data. A second order polynomial was fit to the data. The

component ranges are 0.40<x,;<0.60, 0.10=<x,<0.50, 0.10<x3<0.50, and 0.03<x,<0.08.
We can use ridge regression because of multicollinearity in this example. St. John (1984)
showed that £=0.005 is appropriate by means of the VIF’s and the ridge trace. Also, we
can calculate £=0.004 by the method proposed by Hoerl, Kennard, and Baldwin (1975).
Figure 1 shows the scree diagram when #4=0.000. From Figure 1, we can find that
because the condition number is very large, severe multicollinearity arises in extreme vertices
design. Figure 2 shows the scree diagram with several ks. From Figure 2, we can ascertain
that as the value of £ is changed from zero to 0.001, eigenvalues are decreasing dramatically,
and that as the value of £ is increasing sequentially from 0.001 to 0.007, eigenvalues are
decreasing gradually, but that when £ is greater than 0.005, this decreasing trend becomes
weakened. Table 1 shows the difference of several sequential A;s. Therefore, we can conclude
that 2=0.005~0.006 is appropriate. As other examples, in case of 15-point D-optimal design

(Comell(1990)) and 18-point Snee’s design (Snee(1975)), using the scree diagram, we have the
similar results as the above 15-point extreme vertices design, namely, we can conclude that



Scree Diagram for Detecting Multicollinearity and Estimating Ridge Constant 23

£=0.005~0.006 is appropriate for D-optimal design and %= 0.004~0.005 is appropriate for

Snee’s design.
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Table 1. difference of several sequential A;s

k difference
0.000 vs. 0.001 3770010.60
0.001 vs. 0.002 127.91
0.002 vs. 0.003 48.69
0.003 vs. 0.004 19.91
0.004 vs. 0.005 7.21
0.005 vs. 0.006 5.83
0.006 vs. 0.007 4.77

4. Conclusion

In this thesis, as a graphical method for detecting multicallinearity and estimating ridge

constant, the scree diagram have been proposed. The advantages of the scree diagram can be

stated as follows;

(1) The scree diagram can be used as a tool for detecting multicollinearity and estimating

ridge constant 4.
(2) The scree diagram is nonstochastic methods.

(3) Through the scree diagram, we can evaluate the effect of ridge regression estimator.
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