Abstract
Soliton solutions of a class of generalized nonlinear evo-lution equations are discussed analytically and numerically which is achieved using a travelling wave method to formulate one-soliton solution and the finite difference method to the numerical dolutions and the interactions between the solitons for the generalized nonlinear Schrodinger equations. The characteristic behavior of the nonlinear-ity admitted in the system has been investigated and the soliton state of the system in the limit of $\alpha\;\longrightarrow\;0$ and $\alpha\;\longrightarrow\;\infty$ has been studied. The results presented show that soliton phenomena are character-istics associated with the nonlinearities of the dynamical systems.