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Abstract

Consider the linear multivariate regression model Y= X ,B;+ X,B,+ U, where
Vec(U) ~ N(0, 2 ®Iy). This paper is concerned with Bayes inference of the

model when it is suspected that the elements of B, are constrained in the form

of intervals. The use of the Gibbs sampler as a method for calculating Bayesian
marginal posterior densities of the parameters under a generalized conjugate prior
is developed. It is shown that the approach is straightforward to specify
distributionally and to implement computationally, with output readily adopted for
required inference summaries. The method developed is applied to a real problem.

1. Introduction

Let y1,...,¥, be NX1 vectors representing N independent observations on

each of p correlated dependent random variables and let X be a functional or a

conditional regressor matrix of ¢ independent variables. Suppose we want to
investigate the linear relationship between the dependent and the independent
variables using a linear regression model
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Y = XlBl+XzBQ‘+‘ U,
(1.1)
= XB+U,

where Y=1[y,,...,y,], X=[X,:X,] is a NXq regressor matrix on ¢ independent
variables, B=[B,"B,’]" is a ¢xXp matrix of unknown regression parameters
with B, a g,xXp matrix (£ =1,2), ¢=¢q,+q,, and U is a NXp matrix of
error vectors such that the rows of U, say vy, s, ...,y are independent normal

random vectors with mean vector zero and unknown pXp covariance matrix 2.
The multivariate linear regression model is completely defined if we impose the
condition, p+ g<N, on the quantities in (1.1). This assumption is used so that
there will be a sufficient number of observations available to estimate all of the
parameters.

Some of the early uses of such model are due to Barten(1964) in industrial
applications, Box and Tiao(1972) in quality control and Zellner(1971) in the
evaluation of annual investment. The model will be estimated by the methods of
least squares and maximum likelihood. For a general discussion of the methods
and their properties the reader is referred to the books of Press(1982, Chapter 8)
and Johnson and Wichern(1992, Chapter 7). A completely different approach is
Bayesian estimation method initiated by Tiao and Zellner(1964). Box and Tiao
(1973, Chapter 8) and Press(1989, Chapter 5) have given comprehensive reviews of
Bayesian inference of the multivariate regression model. For a constrained
parameter problem, Ghosh et. al.(1989) and Merwe and Merwe(1992) considered

empirical and hierarchical Bayesian estimation of Bj under the constraint that
B,=(, respectively, but Bayesian estimation of B; under other type of
constraints on B; has not been seen in the literatures yet.

Constrained parameter problem may arise in a wide variety of applications of
the multivariate regression model. The parametric Bayes perspective is attractive
for examining such models. For example consider interval constrained regression
coefficients model, which in a classical setting might employ isotonic regression of
maximum likelihood estimates to obtain point estimates. A more satisfying
analysis would develop and compare posterior distributions arising from priors that
reflect the interval restrictions. However, one problem of the Bayesian estimation
is that analytic approaches (exact or approximate) for carrying out required multi
~dimensional integrations in this case will be well-nigh impossible. Another
problem involved in the Bayesian analysis is that noted by Rothenberg(1963).
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Rothenberg noted that if we use a natural conjugate prior or a vague prior for the
model (1.1), this will involve placing restrictions on the parameters, namely, the
variances and covariances of coefficients appearing in the equations of the system
(1.1). This is due to the fact that the matrix (X’'X)”! enters the covariance
structure in the following way, X®(X’'X)~!. Thus, for example, the ratios of
variances of corresponding coefficients in the first and second equations will all be
equal if we use a natural conjugate prior or a vague prior(see Section 2 for more
restrictions). The restrictions involved in the Bayes estimators are not reasonable
in most situations.

The purpose of this paper is to eliminate the two problems (say, the former and
the latter problem) in the Bayesian estimation of B in (1.1) when it is suspected

that each element of B, is constrained to an interval. For resolving the latter
problem, we develop a Bayesian analysis of the model which avoids placing the
restrictions on the variances and covariances of the posterior distribution of B.
This is done by use of a generalized natural conjugate prior density (so called by
Press) where B and X are independent and B; has normal density, B, a

truncated normal and A=23"' a Wishart. It is shown that the joint and marginal

posterior densities of B;, B; and / are not standard, and hence the former

problem naturally arises in the estimation of B. We resolve it by suggesting an
estimation scheme via the Gibbs sampler. It is shown that the Bayesian
calculations, involved in the former problem, can be implemented routinely for
interval constrained parameters by means of the Gibbs sampler.

2. Constrained Multivariate Regression Models

As stated before, in the standard multivariate models, the NXp response matrix

Y is related to NXg¢ regressor matrix X and ¢Xxp coefficient matrix B by the
equation

Y=XB+U, N2 p+q. (2.1)

ind
Let U =(vy,...,v5), so that UU= ﬁvivi'. Assume v; = N,(0, %), and each
&

element of B, is constrained to an interval where B=(B,’, B;’) . Under the
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assumptions, the rows of the Y matrix are independent normal random vectors,
and hence the likelihood of parameters is

L(B.AIY.X) o IAIN/2exp{—%tr(Y—XB)'(Y—XB)A} 1(Q),
- |A|N/2exp{——1— trAV} (2.2)

2
xexp{-‘%—(b’— B ASXX(8-B)} I(Q),

where B is a g¢xp real matrix, A= Vec(B), ie. B=(B1,....0,) , Q)

denotes the indicator function for the set @
Q = {a,<Bj<c;; j=ka—ar+1,.... kg, k=1,..,p},

A=23"lis an unknown pXxp positive definite symmetric matrix, V= (Y— XB)’
(Y—XB) is the residual matrix, B=(X'X) 'X'Y is the maximum likelihood
estimator (also is the least squares estimator) of B, and ?= Vec( l/;’). Here
Vec(S) is the vec operator denoting the vector formed by stacking columns of
S, one underneath the other.

When B, is not constrained, sampling distribution of the maximum likelihood

and the least square estimators of B is

Vec(B) ~ N(Vec(B), ZQ(X'X)™ ).

From the distribution, one can easily see that the variance-covariance matrix of

B places restrictions on the variances and covariances of B. Specifically, if @ij

denotes #/th element of B, the variance-covariance matrix of Vec(B),

> ®(X’'X) !, vields the restrictions

Var(B,) _ Var(B:) _ Cov(B ;. B:)) _ 0
Var(?ij’) Vd?’(?;j') COU(%iJ"a %i'j') Opr '

for i#i, i,i=1,...,p, j*7, 5,7 =1,..q, where 2= {0;}.
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Broemeling(1985) showed that the same restrictions are also placed in the
Bayesian estimate of the variance-covariance matrix of B when one uses usual
priors(a natural conjugate prior and the Jeffrey's vague prior).

To eliminate the above problem and to take the constraints of B, into account,
we proceed with the analysis by putting a generalized natural conjugate prior
densities (cf. Press 1982) on B and A, and then applying Bayes’ theorem.

Apply the procedure, described in Press(1982), to (2.2) to find a generalized
natural conjugate prior for 8 and A. Assuming A is known and interchanging

the role of (Y,X) and B gives, after enrichment and normalization,
B"" N](Q)(¢,F), F>O, (23)

where B=(B1,...8x)", ¢ and F are arbitrary, Nyg(:, -) denotes the

multivariate normal distribution with truncated intervals
Q= {a,-s B]'S ¢, ]= kq-qg-f-l,...,kq, k= 1, R/ }

This defines the constrained intervals of all the elements in B,. Similar procedure

gives the prior
A~ WG, pm), m>p—1, (2.4)

where WG, p,m) denote a p-dimensional Wishart distribution with scale

parameter G and m degrees of freedom.

Combining (2.3) and (2.4), we get the joint generalized natural conjugate prior, a
truncated normal-Wishart prior. This prior density does not have the restriction
problem on B associated with ordinary natural conjugate prior and the Jeffrey's
vague prior for the problem.

The joint posterior density for £ and A is found by multiplying the truncated
normal-Wishart prior and likelihood function (2.2) (note X'X can be singular),

NBAY.X) < |A| ‘N“"“”"“/Zexp{—-% tr[ A(G™ '+ V+(B— BY X’ X(B— B)]

~ -9 F (8- 9) KQ (25)
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This is again seen to be a truncated normal-Wishart density.
The marginal posterior density of B can be found by integrating (2.5) with

respect to A, using the Wishart normalizing constant, to get

exp{ (8- ¢V F (8- 9}1(Q)
IG™'+ V+(B— B’ X' X(B— B)| """

p(BlY, X) o (2.6)

The posterior density for A is seen to be the product of a factor in the
generalized multivariate Student { form and a factor in the multivariate normal
form. Therefore, the exact posterior density of S is rather complicated as it
stands. Moreover, exact marginal posterior density of A is analytically intractable
due to the truncated normal distribution of B,. On the other hand, we can see,

from (2.5), that full conditionals reduce analytically to closed-form distributions.
Highly efficient sampling routines are available for these distributions, see for
example Spiegelhalter et al.(1996).

3. The Gibbs Sampler

Although exact marginal posterior distributions for the parameters are not
available, the conjugate structure of the joint prior specification allows for painless~
calculation of the Gibbs conditionals(cf. Gilks 1996). Thus the Gibbs sampler may
be used to explore the posterior distributions without having established property
of the marginal posteriors.

A value for each constrained coefficient £; is drawn in turn from its
distribution conditional on B8,(# #*7) and A, and a value for A is drawn

conditional on B. In the algorithm the Gibbs sampler moves from any point in the

support of 8 and A to any nondegenerate neighborhood of any other point in the
support with positive probability in one step. Convergence of the continuous state
Markov chain induced by the Gibbs sampler to the posterior distribution may
therefore be demonstrated following the argument of Tierney(1994).

Theorem 1. The full conditional posterior distributions of A and A are
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BlA ~ N](Q)(Bo,Mwl), (3.1
Al ~ M(G '+ V+(B—B'X'X(B—B)™!, p, N+m), (3.2)

where  B=(B1,....84) ,
Bo=(Bot, s Bop) = (F '+ A @X'X) ((F ' ¢+[4 ®X X]P),
M'=(F'+A40xX)7"

Here Nyg( -, ) denotes a multivariate normal distribution truncated at an

interval @;<B8;<b;, for i=kg—qy+1,...,kg, and k=1, ...,p. Otherwise,

a;=— and b,= .

Proof. From (2.5), we see that, given A, the density of 8 is

HBIAY.X) o« exp{~F(8-B)A ® X' X(8—B)

~5 (8= F (8- 9} 1Q. (33)
Completing the square on B gives

HBIAY,X) o exp(—75 (8~ 8) M8~ B}I(Q). (3.4)

Using the definition in Gilks(1996) of the full conditional posterior distribution, the
conditional of B given /A is obtained from (3.4). Conditional on £, (2.5) gives
the distribution of A.

Noticing that it is computationally inefficient to invert the pgXpg matrix
M=(F '+ A1 ® X'X) in (34), instead we may use following result.

Result 1. Let L be a factor of F, LL ' =F. Let L' (AQ®X X)L have
diagonalization PDP’, ie. D is a diagonal matrix of eigenvalues of
L'(A®X X)L, and the columns of P are the corresponding, ordered
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eigenvectors normalized so that P'P= PP =1, Then
(F'+A®X'X) "' = HU,+D)'H, (35)
where H= LP.

Proof. By making use of properties of the symmetric matrices, F and A®X' X,
and matrix algebra, we have the result.

The Gibbs sampling algorithm based upon the above conditionals is attractive
because the Gibbs sampler is so straightforward in this situation. Simple matrix
calculations and the ability to simulate normal and truncated normal variables and
Wishart random matrix are all that required. See Smith and Hocking(1972) for the
algorithm for generating Wishart random matrix. The computations in Result 1 are
only performed once in each pass of the above Gibbs sampling algorithm.

An algorithm for generating from the truncated univariate normal distribution,
described in Devroye(1986), can be employed to generate A from the truncated
multivariate normal variate in (3.1). This can be done by following process. Given

the full conditional distribution of B8 as Nyg(B,Q), Q=M"' we may
rearrange the elements of B to get B =(8]",8")", where A= Vec(B,) and
B5= Vec(B,) that is the pgyx1 vector consisting of the constrained elements,
ie. a,<B;<b; for ‘j=1,...,pq2. Let denote A; and £2. be mean vector and

covariance matrix of 8" correspondingly arranged and define

@)
Qll *QIZ

Bar ] )

o[t
Boz

921 922

@ (pg)

Then the full conditional distribution of £° given A is Nyg(ByR") and the

following results hold.

Result 2. The full conditional distribution of B8* can be decomposed by
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Bi | By, A ~ NBo+ 2922 (85— By) , L), (3.6)

BN | B, B(2), %], A ~ NyoyBu(D+wauy(h) 2pu()™!

[8°() — BN, 2u2(D), i=1,...,0q., (3.7

where  Qy1,=0Q1—2u9%' 2, B=B W), ...8(0a), Q={a;<B<b;},
Boo= (B (1), ....B80(0a2))", wan()) is a (pg—1)x1 vector obtained by
deleting (pg, + /) th element from  (p,+j, £2p( denotes the (pg—1) % (pg—1)

matrix derived from £ by crossing out the row and column containing
(pg1+7,par+7)th element, say @ p,+jp+i0 Lu2() = @ pgtjipe+; — 0107’
Qu(Dwp(p), and F(j) and By(7) denote (pg—1) X1 vectors obtained by
deleting (pg;+/)th elements from B° and fj, respectively. Here Nygy( -, *)
denotes a univariate normal distribution truncated at an interval a;<8,<b;,

jzl,...,DQQ.

Proof. Applying the properties of the conditional normal distribution to the

distribution of 8% | A, we have the resuit.

When one uses Result 2 for generating Bf(or equivalently #), drawings from
(3.7) can be generated through the one-for-one sampling method(see, Devroye
1986) using a truncated normal density. Once we get a Gibbs sample of B8 from
(36) and (3.7), then we reconstruct B from the value of B8 and proceed to

generated /A from the conditional distribution (3.3). This Gibbs sampling algorithm
gives considerably faster sampler than that adopting a naive rejection method for

the generation of B via (3.1) (see, Devroye 1986 for the naive methods).

4. An Illustrative Example

In order to investigate the performance of the suggested Gibbs sampler,
Bayesian analysis was conducted to a chemical process data listed in <Table 1>
and analyzed by Box and Tiao (1972, P. 454).
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< Table 1 > Yields of Product and By-product of a Chemical Process

Temp. F Product Y By-product Y,
161.3 63.7 20.3
164.0 59.5 24.2
165.7 67.9 18.0
170.1 68.8 20.5
173.9 66.1 20.1
176.2 704 175
1776 70.0 18.2
181.7 73.7 154
1856 74.1 17.8
189.0 79.6 13.3
193.4 77.1 16.7
195.7 82.8 14.8

Our interest is to analyze the chemical process with two dependent variables, yield
of product and yield of by-product, and one independent variable, temperature,
thus the model is

Yo = 00 Xat03Xpten,

Y,‘Z = 612X,1+822X,2+E,2, i=1,...,12,

where X;=1 and X »=(T:;— T)/100 is the ith setting of transposed
temperature corresponding to product yield Y; and by-product yield Yj, for
i=1,2,...,N, N=12. The regression matrix is

’

) N 0y O
B = (B',B)) =

621 622

where By;=(0y, 02) having constraints 6,=0 and 02<0. The N independent
bivariate error vector &; =(&;,€p) are normal with mean zero and unknown

2x2 vprecision matrix /A. We used the generalized natural conjugate prior
BZ Vec(B) ~ N](Q)(O,F), where F= 1014+€(2)e(1)' +2e(3)e(1)'+e(3)e(2)'
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+3eweqy +2ewen’ +ewenr’ Wwith ey being the kth column of I,
Q= {60,120, 65<0}, and A ~ W(G,2,2), with G={g;} with g;=.01 and
£;=0, 1,7=1,2, reflecting lack of prior information about B and A. The

truncated intervals in € are obvious upon investigating the data set.

To diagnose the convergence of the Gibbs sampler, as advocated by Cowles and
Carlin(1996), we ran three parallel chains with starting points drawn from what
we believe 1s a distribution overdispersed with respect to the stationary
distribution. Then we visually inspected convergence of these chains by

overlapping their sampled values on common graphs(so called traces) for 6, and

65, and estimating kernel densities of their sampled values(See, Figure 1).

<Figure 2> annotates each graph with the Gelman and Rubin(1992) statistic.
As seen in <Figure 1> and <Figure 2>, the convergence diagnostic shows that
theGibbs sampler mixes fast and converges to a stationary distribution within 1000

iterations. Those figures for the chains of @, and #;(not presented here)

showed the same convergence.

2 — =
° - -
(=]
8
i g
2 r ety — S
o
o
0 1000 [} n an 60
& - -
i -
§ o
8
(=]
1 © — -~
0 1000 -30 20 -10 0

500
iteration

< Figure 1 > Traces and Kernel Densities of 85 any Gy

{1000 values per trace and kernel density).
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theta21 theta22

——  median

~— median

©eTs% - ) o ers%

104

Shrink factor
1.02

500 1000 500 10100
Last iteration in segment Last iteration in segment

< Figure 2 > Gelman and Rubin Shrinkage Factors
{(shrinkage factor approaching to 1 implies the convergence).

Taking the number of burn-in iterations M to discard as M= 1000, Gibbs
sample is collected from M+1 to iteration M = M+1000, the last iteration
generated. If the chosen summary statistic is designated p= T(H,-,-), then the

estimate of its mean based on the retained iterates (95, =M+1,... .M is

~ 1 g ¢
7y T R AL

To assess the performance of the Gibbs sampler, the resulting estimates of 8;'s
are compared to the corresponding unconstrained ML estimates (since constrained
ML has not been proposed vet). We also compared 95% interval for each @; with
that of the ML estimate. As expected, <Table 2> notes that the constrained
estimation of 6;’s is more efficient than the unconstrained estimation in the
sense that the former yields shorter 95% intervals and standard deviations of 6

‘s than the latter does.
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< Table 2 > Comparison of the Bayes Estimates and Unconstrained ML Estimates.
(standard deviation of each estimate is noted in the parenthesis)

95% interval
parameter method estimate
lower upper
61 Bayes 71.134 70.932 71.425
(0.123)
ML 69.738 69.738 72.581
(0.715)
019 Bayes 18.070 17.614 18.627
(0.242)
ML 18.066 16.981 19.711
(0.553)
Gy Bayes 53.452 49918 55.536
(1.490) .
ML 54.435 41.699 67.171
(6.497) A
Oop Bayes -18.306 -22.241 12.714
(2.410)
ML -20.093 -29.940 10.245
(5.024)

5. Concluding Remarks

A’ constrained Bayesian estimation of the multivariate linear regression model is
pursued in' this paper. It is done by use of a generalized natural conjugate prior
density where Vec(B) and A are independent and Vec(B) has a truncated
normal density and A a Wishart. However, the joint and marginal posterior
densities are not of standard distributions and one must use approximations to
obtain standard forms, leading to small sample problem. Instead, we use the Gibbs
sampler to estimate the model. It is seen that the approach is straightforward to
specify distributionally and computationally, with output readily adopted for
required inference summaries. Thus the content of this paper solves two major
problems attached to the estimation of the multivariate linear regression model.
First, the suggested estimation scheme avoids well known restrictions on the
variances covariances of the usual Bayesian and frequentist estimates of Vec(B) .
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Second, the scheme provides a simple method for estimating a constrained
regression coefficient matrix.

Convergence of the Gibbs sampler proposed is examined by an illustrative
example in Section 4. Various diagnostic tools for testing the convergence showed
that the Gibbs sequence safely converges without regard to the choice of starting
points. Therefore, other inferences such as prediction of dependent vectors and
hypothesis testing of B can be immediately conducted by the Gibbs sampler. The
result in this paper can be readily extended to the analysis of vector time series
models and MANOVA. A study pertaining to the extension is not unimportant and
is left as a future study of interest.
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