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Abstract

The mean residual life function is the expected remaining life of an item at age
x. The problem of trend change in the mean residual life is great interest in the
reliability and survival analysis. In this paper we develop a new test statistic for
testing whether or not the mean residual life changes its trend based on a
complete sample. Monte Carlo simulations are conducted to compare the perfor
mance of our test statistic with that of previously known tests.

1. Introduction

Let F be a continuous life distribution(i.e., F(x)=0 for x<0) with the finite
first moment and let X be a nonnegative random variable with distribution F.
The mean residual life(MRL) function e(x) is defined as

e(X)=E(X—x|X>x), (1.1
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The MRL is the expected remaining lifetime, X —2x, given that the item has

survived to time x. The MRL function e(x) in (1.1) can also be written as

f m?‘( w) du

e(x)=—x“—f—;-:(x‘)——,

where F(x)=1—F(x) is the reliability function.

The MRL function plays a very important role in the area of engineering,
medical science, survival studies, social sciences, and many other fields. The MRL
is used by engineers in burn-in studies, setting maintenance policies, and in
comparison of life distributions of different systems. Social scientists use MRL,
also called as inertia, in studies of lengths of wars, duration of strikes, job
mobility etc. Medical researchers use MRL in lifetime experiments under various
conditions. Actuaries apply MRL to setting rates and benefits for life insurance.

Hall and Wellner(1981) derive that all MRL functions associated with
distributions having a finite mean must satisfy three conditions:

020, H=—1, fom;(IT) dx= oo,

See also Bhattacharjee(1982) for another characterization of MRL. Knowledge of
the MRL function completely determines the reliability function, via the relation

_ e(0)exp{ — [ [e(w)] 'du
F(x)= { e%x) l x=0. (1.2)

Cox(1962) assigns as an exercise the demonstration that MRL determines the”
reliability. Kotz and Shanbhag(1980) derive a generalized inversion formula for
distributions that are not necessarily life distributions. Hall and Wellner(1981) have
an excellent discussion of (1.2) along with further references.

Guess and Proschan(1988) show that various families of life distributions defined
in terms of the MRL(e. g. increasing MRL, decreasing MRL) have been used as
models for lifetimes for which such prior information is available. One such family
of distributions is called as “increasing initially then decreasing MRL(IDMRL)”

distributions if there exists a turning point =0 such that
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e(s)<e(d for 0<s<ir, els)=e(d) for r<s<t (1.3)

The dual class of “decreasing initially, then increasing MRL(DIMRL)” distributions
is obtained by reversing inequalities on the MRL function in (1.3). IDMRL
distributions model life in which, in terms of residual life, aging initially is
beneficial but eventually is detrimental. Such life times are exemplified. (i) Human
lifetimes; High infant mortality causes the initially IMRL and deterioration with
advancing age causes the subsequently DMRL. (ii) Employment time with a given
company, The remaining employment time (residual life) of an employee with
several years with a company is likely (due to time investment, career value, etc.)
to exceed that of an employee with the company only several months. This
results in increasing MRL with years of employment up to a certain point r,
after which, due to retirement, MRL decreases. Also see Guess and Proschan(1988)
and the references therein for further applications of the IDMRL family.

It is well known that e(x) is constant for all x>0 if and only if F is an
exponential distribution (i.e, F(x)=1—exp(—x/p) for x>0, u>0). Due to this
“no-aging” property of the exponential distribution, it is of practical interest to
know whether a given life distribution F is constant MRL or IDMRL. Therefore,
we consider the problem of testing

Hy : F is constant MRL,
against

H, : F is IDMRL (and not constant MRL),

based on random samples. When the dual model is proposed, we test H, against

H," : F is DIMRL (and not constant MRL).

This problem is noted by Guess, et al.(henceforth GHP, 1986), who obtain tests
when the change point is known or when the proportion before the change point
takes place is known. Aly(1990) also discusses this problem. Both of GHP(1986)
and Aly(1990) tests are based an estimates of functional which distinguish that F

is constant MRL against that F is IDMRL(DIMRL).

In Section 2 we develop a test statistic for testing exponentiality against IDMRL
(DIMRL) alternative. We assume that the turning point is known. GHP(1986)
provide excellent explaining that this assumption is very realistic in many
interesting situations. To establish the asymptotic distribution of our test statistic,
we used the differential statistical function approach. In Section 3 Monte Carlo
simulations are conducted to compare the performance of our test statistic with
the GHP's(1986) test and Aly’'s(1990) test for various values of sample size n.
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2. Test for Trend Change in MRL

In this section we propose a test statistic for testing exponentiality against
IDMRL(DIMRL) alternative. We assume that the turning point 7 is known or has
been specified by the user. Our test statistic is motivated by a simple observation

of Ahmad(1992). If e(x) is differentiable and e(x) is decreasing(increasing), then

de(x) _ _f(Dv(x) = F(x)
dx F (%)

<(=)0,

where v(x)= f F(wdu and f(x) denotes the probability density function

corresponding to F. Thus e(x) is decreasing(increasing) if and only if

flv(x) < (=) F (x). Hence, as a measure of the deviation from the null

hypothesis H, in favor of Hj;, we propose the parameter

T(F)= [F@o— F et [ (F =00

Note that T(F) is zero for the exponential distribution F and strictly positive
for the IDMRL F. Using integration by parts, we can rewrite 7T(F) as

T(F)= [ Fwde—2 [ F’det2 [ F (a—2F(@ || Foas.

Let F,(x) be the empirical distribution formed by a random sample X,,-, X,
from F and let X (y<--*<(X (, be the order statistics of the sample. Then we
can estimate 7(F) by

—
n )(T_X(m)

T(F,) = ngl(i“;—*l)(X(,)—X(i_nHBl( 2

+BZ( n:ll )(X(i'ﬁ-l)'"f)‘*‘ i:$+232( n—;+1 )(X(l)_X(i—l));
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where 0=X )< X 1)< <X (<1< X (441 << X (w» Bi(%) = u—2u? and
By(w)= (1—2 F,(D)u+2u’

To establish asymptotic distribution of 7T(F,), we use the differentiable

statistical function approach of von Mises(1947) (cf. Boos and Serfling(1980) and
Serfling(1980)). The differential statistical approximation of T(F,) is defined as

T(F,)=T(F)+dT(F)(F,—F)+R,(F)

where d;T(F)(G—F) is the first-order Gateaux differential of functional 7 at

the point F in the direction G, and F and G are life distributions in the
domain of 7T( - ). For the IDMRL functional 7T, the Gateaux differential

& T(F)(F,—F) =L 34, T(F) (85~ F)
- "D (x)dx+4 i F()D,(0)dx—4 f “F(x)D,(x)dx

+2F () [ "D (Ddx+2D,(D) f “F)dx

where D,(x)= F(x)— F,(x) and Ox(x)=0 if x<(X; and =1 if x=X;. Our
proof of asymptotic normality approximates T(F,)— T(F) by d\T(F)F,—F)
and shows that the term VaR,(F) converges in probability to 0. Let
p(T, F)=Epld T(F)(8x,~F)] and (T, F)= Varp[d, T(F)(6x,~ F)l.

Then we can obtain the following result.

THEOREM 2.1 Let F be the life distribution such that 0< F() <1 and
(T, F)< . Then

Va(T(F,)— T(F)) % N, AT, F)).

PROOF. Applying the classical Lindberg-Levy central limit theorem, we have
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Vad, T(F)F,—F) -% N, (T, F)).

Next we show that \GLR,,(F ) converges in probability to 0. By straightforward

calculation, for the life distribution F we have
R(F) =T(F,)-T(F)—d,T(F)(F,—F)
=2 [( F ()~ F)idc+2 [ (Fo(n—F)’ax

—2( Fo(D—F(D) f ( Fo(x)— F(x))dx.
Thus for any >0 and the life distribution F,

ValR(F <tV [ ( Fp(d)— F)2de+2Val Fr (9 =T [ | Fol) — Fllds

<6Vnswl F, (0= F() [ | F\(n— F(ldx.

By the classical weak convergence of the empirical process, ‘/ZR,,(F ) converges

in probability to 0. This completes the proof. []

Under H;, (ie. F is exponential with mean pg), we have that VaT(F,) is

asymptotically normal distributed with mean 0 and variance ﬂ2/3. The distribution
of T(F,) is not scale invariant. In order to make our test scale invariant we use

the test statistic

MT_(Fn)

T,=
g X

where X denote the sample mean. By Slusky’s theorem, 7T, is asymptotically
normal distributed with mean 0 and variance 1/3, under H,,.

The IDMRL test procedures rejects Hj in favor of H; at the approximation
level a if \/_37‘:,22,,. Analogously, the DIMRL test rejects H, in favor of H,

at the approximation level a if V3T'< —2,.
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3. Power Comparison

In this section we perform a Monte Carlo simulation to compare the
performance of our test with that of GHP's(1986) test and Aly’s(1990) test by
simulating the power of test. For Monte Carlo study we used the subroutine
IMSL of the package FORTRAN on the IBM super computer SP2 at Seoul
National University.

To compare the power of our test based on T, with that of GHP's(1986) test
based on U, and Aly's(1990) test based on V7, the random numbers are

generated from

[1+a’]2—c2 ]I/Zaﬂ

_ ~ 8
Fa,ﬁ,r(x)“"{ B+ rexp(— ax)(1 —exp(— ax)) }{ [ exp(ax) + d]* — ¢

x{ exp(ax) +d—c 1+d+c}7/4aﬁ‘*c, 20

explax)+d+c 1+d—c

where d=7/28, *=[4(8/7)+1)/[4(B8/9?]. This distribution has MRL function
€45/ %) =B+ yexp(— ax)(1 —exp(—ax)), x=0. The motivation for choosing

F g, is that F,4, has IDMRL structure with the turning point r= In2/a

for any choice of (a,8,7) and F, 4, is exponential distribution if 7= 0.
Figures 1~4 contain Monte Carlo estimated powers based on 1000 replications
of sample size #=10,20,-,100 from F, 4z, for =1 and a selection of ( a, 7)
when the level of significance is 0.05. From figures, we notice that the powers of
3 tests increase rapidly as 7 increases when « is fixed and also as a increases
(ie, the turning point r decreases) when 7 is fixed. It is further better to
increase y than ea. This is generally to be expected since the width of e(x)
increases as ¥ increases. Figures show that our test generally dominates the
other tests except small @ and small y. But the power of our test increase more

rapidly than those of the other tests as #» increases for any « and 7.
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