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ABSTRACT

In this paper we give another normalization of fuzzy ideals in near-rings.

1. Introduction

W. Liu[17] has studied fuzzy ideals of a ring, and
many researchers{5,12,13,22] are engaged in extend-
ing the concepts. The notion of fuzzy ideals and its
properties were applied to various areas: semigroups
[14,15,16,19,21], distributive lattices[2], artinian rings
18], BCK-algebras[20]. S. Abou-Zaid[1] studied
fuzzy ideals in near-rings, and many followers[8,9,10,
11] discussed further properties of fuzzy ideals in near-
rings. The concept of normalization of fuzzy ideals
was applied to BCK-algebras|7], Gamma-rings[6], and
near-rings{11]. In this paper we give another nor-
malization of fuzzy ideals in near-rings and discuss
some properties of fuzzy ideals.

A non-empty set R with two binary operations “+’
and " " is called a near-ring[3] if (1) (R, +) is a
group, (2) (R, - ) is a semigroup, (3) x - (y+2)=x - y+
x - z for all x,y,z&R. We will use the word ‘near-ring’
to mean ‘left near-ring . We denote xy instead of x - y.
Note that x0=0 and x(-y)=-xy but in general Ox+0
for some x&R. An ideal I of a near-ring R is a
subset of R such that (4) (/, +) is a normal subgroup
of (R, +), (5) RICI, (6) (r+i)s-rs<1 for any i<l and
any r,s€R. Note that I is a left ideal of R if I
satisfies (4) and (5), and [ is a right ideal of R if I
satisfies (4) and (6).

2. Normalizaton of Fuzzy ldeals

Let R be a near-ring and u be a fuzzy subset of R.
We say p a fuzzy subnear-ring of R if (7) u(x-y)=
min{p(x), wy)}, (8) u(xy)=min{ux), u(y)}, for all
x,y&R. p is called a fuzzy ideal of R if u is a fuzzy
subnear-ring of R and (9) u(x)=u(y+x-y), (10) u(xy)=
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u(), (11) p(x+iy-xy=>u(i), for any xy,i<R. Note
that 1 is a fuzzy left ideal of R if it satisfies (7), (9)
and (10), and p is a fuzzy right ideal of R if it
satisfies (7), (8), (9) and (11) (see[1]).

We give a example of fuzzy ideals of near-rings
which was discussed in[12].

Example 2.1 ([12]) Let Ri={a, b, ¢, d} be a set
with two binary operations as follows:

+|a b ¢ d -la b ¢ d
ala b ¢ d ala a a a
bbb a d bia a a a
clc d b a cla a a a
dld ¢ a b dia a b b

Then we can easily see that (R; +, -) is a (left)
near-ring. Define a fuzzy subset y: R—[0,1] by u(c)=

p(d) < u(b)  u(a). Then p is a fuzzy ideal of R.

Lemma 2.2 ([12]) If a fuzzy subset 4 of R
satisfies the property (7) then

() 1(0g)= u(x),

(ii) p(=x)=p(x), for all x<R.

For a given fuzzy left (right resp.) ideal of R, we
note that p(0) is the largest value of u. It is often
convenient to have w(0)=1. A fuzzy left (right resp.)
ideal 4 of R is said to be normal if u(0)=1.

Theorem 2.3 Let u be a fuzzy left (right resp.)
ideal of R and let u be a fuzzy subset in R defined
by

A= — )

o)

for all x&R. Then [ is a normal fuzzy left (resp.
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right) ideal of R containing .
Proof. Let u be a fuzzy left ideal of R. Then

min{ii(x), fi(y )} = min{ ”(10) (), ﬁ(—lﬁ)—u@)}
= ﬁ min{ju(x), p(y )}
1
SW.U(X—)’)
=ﬁ(x—y),
ooy 1
ixy) = ”(O)u(xy)
1
Zmﬂb’)
)
and
Lo
ﬂ(x)—wﬂ(x)
o
—“(O)ﬂ(yﬂc y)
::l’l(y+x_y)7

for all x,y&R. Hence fi is a fuzzy left ideal of R.
Suppose that u is a fuzzy right ideal of R. Then

oy = L
xy)= 0) Hxy)

> ﬁmin{mxx )}

= min{{i(x), ()}

and

AGx +i)y —x) = ﬁu«x +i)y 1)

1 .
> ———u(i)
1(0)
= [fi(i)
for all x,y,i<R. Hence fi is a right ideal of R. Clearly
[(0)=1 and u<fi. This completes the proof.
we have

that the following

Noticing uch,

corollary.

Corollary 2.4 If pu is a fuzzy left (right resp.) ideal
of R satisfying fi(x)=0 for some x&R, then pu(x)=0
also.

Lemma 2.5 ([1]) Let u be a fuzzy left (right resp.)
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ideal of R. Then R . ={xER|u(x)=p(0)} is a left
(right resp.) ideal of R.
Using the Lemma 2.5 we prove the following theorem.

Theorem 2.6 Let u and v be fuzzy left (right resp.)
ideals of R. If uCv and (0)=wv(0), then R ,<R,.

Proof. Assume that yCv and u0)=v(0). If x&R,
then w(x)>u(x)=p(0)=(0). Noticing that w(x)<wW0)
for all x&R, we have VW(x)=wv(0), that is, x&R,. This
completes the proof.

Corollary 2.7 If u and v are normal fuzzy left
(right resp.) ideals of R satisfying uCv, then R ,.CR ..

Proof. Since u and v are normal, p(0)=v(0)=1. It
follows from Theorem 2.6 that R .&R ..

Proposition 2.8 ([1]) Let x be a characteristic
function of a non-empty subset I/ of R. Then }; is a
fuzzy left (right resp.) ideal if and only if I is a left
(right resp.) ideal of R.

Theorem 2.9 For any left (right resp.) ideal I of R,
the characteristic function ), of / is a normal fuzzy
left (right resp.) ideal of R and Ry, =I.

Proof. 1t follows from Proposition 2.8 that y; is a
fuzzy left (right resp.) ideal of R. Since I is a left
(right resp.) ideal of R, O&T and hence y{0)=1, i.e.,
% is a normal fuzzy left (right resp.) ideal of R.
Moreover,

Ry={xeR |2 (x) = x,(0)}
={xe R|x(x)=1}
:I’

completing the proof.

Theorem 2.10 A fuzzy left (right resp.) ideal u of
R is normal if and only if fi=p.

Proof. Assume that y is a normal fuzzy left (right
resp.) ideal of R and let x&R. Then ,ﬁ(x):iu(x)#t

. H(0)

(x), and hence fi=p1.

Theorem 2.11 If y is a fuzzy left (right resp.)
ideal of R, then fr= L.

Proof. For any x&R we have ﬁx)= ﬂ(%[l(x): (0),

since ﬂ(O):Rl(Bu(O)ﬂ, completing the proof.
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Since y is normal, fi=y. By applying Theorem 2.11
we obtain:

Corollary 2.12 If g is a normal fuzzy left (right
resp.) ideal of R, then /fl:p.

Theorem 2.13 Let u be a fuzzy left (right resp.)
ideal of R. If there exists a fuzzy left (right resp.)
ideal v of R satisfying ¥ "y, then u is normal.

Proof. Suppose there exists a fuzzy left (right resp.)
ideal v of R such that ¥ u. Then 1=¥0)<u(0),
whence ((0)=1. The proof is complete.

By using Theorem 2.10, we have the following
corollary.

Corollary 2.14 Let u be a fuzzy left (right resp.)
ideal of R. If there exists a fuzzy left (resp. right)
ideal v of R satisfying V<, then fi=p.

Theorem 2.15 Let u be a non-constant normal
fuzzy left (resp. right) ideal of R, which is maximal
in the poset of normal fuzzy left (right resp.) ideals
under set inclusion. Then u takes only the values 0
and 1.

Proof. Note that p(0)=1. Let x&R be such that u(x)
#1. It is enough to show that u(x)=0. Assume that
there exists a&R such that 0( w(@){ 1. Define a

fuzzy subset v:R—[0,1] by w(x) :=%{,u(x)+,u(a)} for

all x&R. Then clearly v is well-defined. Assume that
M is a normal fuzzy left ideal of R. Let x,y&R. Then

M —») = 2 =)+ @)

2 - {min{ux), WO )+ H@)}
=min {2 {ux) + @)}, 1-{H0)+ @)}
= min{v(x), v)},
Vx) = () + )}
=y +x =)+ @)}
=Wy +x —y)

and
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V) = ) + )}

2 S HO)+u@))
= V)

Hence v is a fuzzy left ideal of R. Suppose that u
is a fuzzy right ideal of R. Then

Vo) = 2 )+ (@)}
2 2 {min{uo), KO )}-+ (@)}
= min{ - {U(x)+ @)}, 3-{H0)+ (@)}
= min{v(x), v0)},
and

M +iy =) = G +i)y —09)+ @)

1 .
2 - {uE)+pa)}
= V(i)
for all x,y,iER. Hence v is a fuzzy right ideal of R.

Since ®(0)=1, ¥ is a normal fuzzy left (right resp.)
ideal of R. Noticing that

. o 2u(a)
W0)=1> Ha)=—=H2__ 4
H(0) + pi(a )
we know that ¥ is non-constant. It follows from {a)
> (@) that p is not maximal. This proves the
theorem.

)
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