Another Normalization of Fuzzy Ideals in Near-rings Young Hee Kim*, Seung II Baik** and Hee Sik Kim***

*Chungbuk National University
The Catholic University of Korea, *Hanyang University

ABSTRACT

In this paper we give another normalization of fuzzy ideals in near-rings.

1. Introduction

W. Liu[17] has studied fuzzy ideals of a ring, and many researchers[5,12,13,22] are engaged in extending the concepts. The notion of fuzzy ideals and its properties were applied to various areas: semigroups [14,15,16,19,21], distributive lattices[2], artinian rings [18], BCK-algebras[20]. S. Abou-Zaid[1] studied fuzzy ideals in near-rings, and many followers[8,9,10, 11] discussed further properties of fuzzy ideals in near-rings. The concept of normalization of fuzzy ideals was applied to *BCK*-algebras[7], Gamma-rings[6], and near-rings[11]. In this paper we give another normalization of fuzzy ideals in near-rings and discuss some properties of fuzzy ideals.

A non-empty set R with two binary operations "+" and " " is called a near-ring[3] if (1) (R, +) is a group, (2) (R, \cdot) is a semigroup, (3) $x \cdot (y+z)=x \cdot y+x \cdot z$ for all $x,y,z\in R$. We will use the word near-ring to mean left near-ring. We denote xy instead of $x \cdot y$. Note that x0=0 and x(-y)=-xy but in general $0x\neq 0$ for some $x\in R$. An $ideal\ I$ of a near-ring R is a subset of R such that (4) (I, +) is a normal subgroup of (R, +), (5) $RI\subseteq I$, (6) $(r+i)s-rs\in I$ for any $i\in I$ and any $r,s\in R$. Note that I is a left ideal of R if I satisfies (4) and (5), and I is a right ideal of R if I satisfies (4) and (6).

2. Normalizaton of Fuzzy Ideals

Let R be a near-ring and μ be a fuzzy subset of R. We say μ a fuzzy subnear-ring of R if (7) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\}$, (8) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$, for all $x,y \in R$. μ is called a fuzzy ideal of R if μ is a fuzzy subnear-ring of R and (9) $\mu(x) = \mu(y+x-y)$, (10) $\mu(xy) \ge \mu(y+x-y)$

 $\mu(y)$, (11) $\mu((x+i)y-xy \ge \mu(i)$, for any $x,y,i \in R$. Note that μ is a fuzzy left ideal of R if it satisfies (7), (9) and (10), and μ is a fuzzy right ideal of R if it satisfies (7), (8), (9) and (11) (see[1]).

We give a example of fuzzy ideals of near-rings which was discussed in [12].

Example 2.1 ([12]) Let $R:=\{a, b, c, d\}$ be a set with two binary operations as follows:

+	a	b	c	d		a	b	c	d
a	a	b	c	d	a	a	а	а	a
b	b	а	d	c			a		
c	c	d	b	a			a		
đ	d	c	a	b			a		

Then we can easily see that $(R; +, \cdot)$ is a (left) near-ring. Define a fuzzy subset $\mu: R \rightarrow [0,1]$ by $\mu(c) = \mu(d) \langle \mu(b) \rangle \langle \mu(a)$. Then μ is a fuzzy ideal of R.

Lemma 2.2 ([12]) If a fuzzy subset μ of R satisfies the property (7) then

- (i) $\mu(0_R) \geq \mu(x)$,
- (ii) $\mu(-x)=\mu(x)$, for all $x \in R$.

For a given fuzzy left (right resp.) ideal of R, we note that $\mu(0)$ is the largest value of μ . It is often convenient to have $\mu(0)=1$. A fuzzy left (right resp.) ideal μ of R is said to be *normal* if $\mu(0)=1$.

Theorem 2.3 Let μ be a fuzzy left (right resp.) ideal of R and let μ be a fuzzy subset in R defined by

$$\hat{\mu}(x) := \frac{1}{\mu(0)} \mu(x)$$

for all $x \in R$. Then $\hat{\mu}$ is a normal fuzzy left (resp.

right) ideal of R containing μ .

Proof. Let μ be a fuzzy left ideal of R. Then

$$\min{\{\hat{\mu}(x), \hat{\mu}(y)\}} = \min{\{\frac{1}{\mu(0)}\mu(x), \frac{1}{\mu(0)}\mu(y)\}}$$

$$= \frac{1}{\mu(0)}\min{\{\mu(x), \mu(y)\}}$$

$$\leq \frac{1}{\mu(0)}\mu(x-y)$$

$$= \hat{\mu}(x-y).$$

$$\hat{\mu}(xy) = \frac{1}{\mu(0)}\mu(xy)$$

$$\geq \frac{1}{\mu(0)}\mu(y)$$

$$= \hat{\mu}(y)$$

and

$$\hat{\mu}(x) = \frac{1}{\mu(0)} \mu(x)$$

$$= \frac{1}{\mu(0)} \mu(y + x - y)$$

$$= \hat{\mu}(y + x - y),$$

for all $x,y \in R$. Hence $\hat{\mu}$ is a fuzzy left ideal of R. Suppose that μ is a fuzzy right ideal of R. Then

$$\hat{\mu}(xy) = \frac{1}{\mu(0)} \mu(xy)$$

$$\geq \frac{1}{\mu(0)} \min{\{\mu(x), \mu(y)\}}$$

$$= \min{\{\hat{\mu}(x), \hat{\mu}(y)\}}$$

and

$$\hat{\mu}((x+i)y - xy) = \frac{1}{\mu(0)} \mu((x+i)y - xy)$$

$$\geq \frac{1}{\mu(0)} \mu(i)$$

$$= \hat{\mu}(i)$$

for all $x,y,i \in R$. Hence $\hat{\mu}$ is a right ideal of R. Clearly $\hat{\mu}(0)=1$ and $\mu \subseteq \hat{\mu}$. This completes the proof.

Noticing that $\mu \subseteq \hat{\mu}$, we have the following corollary.

Corollary 2.4 If μ is a fuzzy left (right resp.) ideal of R satisfying $\hat{\mu}(x)=0$ for some $x\in R$, then $\mu(x)=0$ also.

Lemma 2.5 ([1]) Let μ be a fuzzy left (right resp.)

ideal of R. Then $R_{\mu}:=\{x\in R|\mu(x)=\mu(0)\}$ is a left (right resp.) ideal of R.

Using the Lemma 2.5 we prove the following theorem.

Theorem 2.6 Let μ and ν be fuzzy left (right resp.) ideals of R. If $\mu \subseteq \nu$ and $\mu(0) \subseteq \nu(0)$, then $R_{\mu} \subseteq R_{\nu}$.

Proof. Assume that $\mu \subseteq v$ and $\mu(0)=v(0)$. If $x \in R_{\mu}$ then $v(x) \ge \mu(x) = \mu(0) = v(0)$. Noticing that $v(x) \le v(0)$ for all $x \in R$, we have v(x)=v(0), that is, $x \in R_{\nu}$. This completes the proof.

Corollary 2.7 If μ and ν are normal fuzzy left (right resp.) ideals of R satisfying $\mu \subseteq \nu$, then $R_{\mu} \subseteq R_{\nu}$.

Proof. Since μ and ν are normal, $\mu(0)=\nu(0)=1$. It follows from Theorem 2.6 that $R_{\mu} \subseteq R_{\nu}$.

Proposition 2.8 ([1]) Let χ_I be a characteristic function of a non-empty subset I of R. Then χ_I is a fuzzy left (right resp.) ideal if and only if I is a left (right resp.) ideal of R.

Theorem 2.9 For any left (right resp.) ideal I of R, the characteristic function χ_I of I is a normal fuzzy left (right resp.) ideal of R and $R_{\chi_I} = I$.

Proof. It follows from Proposition 2.8 that χ_I is a fuzzy left (right resp.) ideal of R. Since I is a left (right resp.) ideal of R, $0 \subseteq I$ and hence $\chi(0)=1$, i.e., χ_I is a normal fuzzy left (right resp.) ideal of R. Moreover,

$$R_{\chi_{I}} = \{ x \in R \mid \chi_{I}(x) = \chi_{I}(0) \}$$

= \{ x \in R \ \ \chi_{I}(x) = 1 \}
= I.

completing the proof.

Theorem 2.10 A fuzzy left (right resp.) ideal μ of R is normal if and only if $\hat{\mu}=\mu$.

Proof. Assume that μ is a normal fuzzy left (right resp.) ideal of R and let $x \in \mathbb{R}$. Then $\hat{\mu}(x) = \frac{1}{\mu(0)} \mu(x) = \mu(x)$, and hence $\hat{\mu} = \mu$.

Theorem 2.11 If μ is a fuzzy left (right resp.) ideal of R, then $\hat{\mu}=\hat{\mu}$.

Proof. For any $x \in R$ we have $\hat{\mu}(x) = \frac{1}{\hat{\mu}(0)}\hat{\mu}(x) = \hat{\mu}(0)$, since $\hat{\mu}(0) = \frac{1}{\mu(0)}\mu(0) = 1$, completing the proof.

Since μ is normal, $\hat{\mu}=\mu$. By applying Theorem 2.11 we obtain:

Corollary 2.12 If μ is a normal fuzzy left (right resp.) ideal of R, then $\hat{\mu}=\mu$.

Theorem 2.13 Let μ be a fuzzy left (right resp.) ideal of R. If there exists a fuzzy left (right resp.) ideal ν of R satisfying $\hat{\nu} \subseteq \mu$, then μ is normal.

Proof. Suppose there exists a fuzzy left (right resp.) ideal v of R such that $\hat{v} \subseteq \mu$. Then $1=\hat{v}(0) \le \mu(0)$, whence $\mu(0)=1$. The proof is complete.

By using Theorem 2.10, we have the following corollary.

Corollary 2.14 Let μ be a fuzzy left (right resp.) ideal of R. If there exists a fuzzy left (resp. right) ideal v of R satisfying $\hat{v} \subseteq \mu$, then $\hat{\mu} = \mu$.

Theorem 2.15 Let μ be a non-constant normal fuzzy left (resp. right) ideal of R, which is maximal in the poset of normal fuzzy left (right resp.) ideals under set inclusion. Then μ takes only the values 0 and 1.

Proof. Note that $\mu(0)=1$. Let $x \in R$ be such that $\mu(x) \neq 1$. It is enough to show that $\mu(x)=0$. Assume that there exists $a \in R$ such that $0 < \mu(a) < 1$. Define a fuzzy subset $v: R \rightarrow [0,1]$ by $v(x) := \frac{1}{2} \{\mu(x) + \mu(a)\}$ for all $x \in R$. Then clearly v is well-defined. Assume that μ is a normal fuzzy left ideal of R. Let $x,y \in R$. Then

$$v(x - y) = \frac{1}{2} \{ \mu(x - y) + \mu(a) \}$$

$$\geq \frac{1}{2} \{ \min\{ \mu(x), \mu(y) \} + \mu(a) \}$$

$$= \min\{ \frac{1}{2} \{ \mu(x) + \mu(a) \}, \frac{1}{2} \{ \mu(y) + \mu(a) \} \}$$

$$= \min\{ v(x), v(y) \},$$

$$v(x) = \frac{1}{2} \{ \mu(x) + \mu(a) \}$$

$$= \frac{1}{2} \{ \mu(y + x - y) + \mu(a) \}$$

$$= v(y + x - y)$$

and

$$v(xy) = \frac{1}{2} \{ \mu(xy) + \mu(a) \}$$

$$\geq \frac{1}{2} \{ \mu(y) + \mu(a) \}$$

 = $v(y)$.

Hence v is a fuzzy left ideal of R. Suppose that μ is a fuzzy right ideal of R. Then

$$v(xy) = \frac{1}{2} \{ \mu(xy) + \mu(a) \}$$

$$\geq \frac{1}{2} \{ \min\{ \mu(x), \mu(y) \} + \mu(a) \}$$

$$= \min\{ \frac{1}{2} \{ \mu(x) + \mu(a) \}, \frac{1}{2} \{ \mu(y) + \mu(a) \} \}$$

$$= \min\{ v(x), v(y) \},$$

and

$$V((x+i)y - xy) = \frac{1}{2} \{ \mu((x+i)y - xy) + \mu(a) \}$$

$$\geq \frac{1}{2} \{ \mu(i) + \mu(a) \}$$

$$= V(i)$$

for all $x,y,i \in R$. Hence v is a fuzzy right ideal of R.

Since $\hat{v}(0)=1$, \hat{v} is a normal fuzzy left (right resp.) ideal of R. Noticing that

$$\hat{v}(0) = 1 > \hat{v}(a) = \frac{2\mu(a)}{\mu(0) + \mu(a)} > \mu(a),$$

we know that \hat{v} is non-constant. It follows from $\hat{v}(a) > \mu(a)$ that μ is not maximal. This proves the theorem.

References

- [1] S. Abou-Zaid, "On Fuzzy Subnear-rings and Ideals," Fuzzy Sets and Sys. 44, pp. 139-146, 1991.
- [2] Yuan Bo and Wu Wangming, "Fuzzy Ideals on a Distributive Lattice," Fuzzy Sets and Sys. 35, pp. 231-240, 1990.
- [3] J. R. Clay, "Nearrings; Geneses and Applications," Oxford, New York, 1992.
- [4] P. S. Das, "Fuzzy Groups and Level Subgroups," J. Math. Anal. and Appl. 84, pp. 264-269, 1981.
- [5] V. N. Dixit, R. Kumar and N. Ajal, "On Fuzzy Rings," Fuzzy Sets and Sys. 49, pp. 205-213, 1992.
- [6] S. M. Hong and Y. B. Jun, "A Note on Fuzzy Ideals in Gamma-rings," *Bull. Honam Math. Soc.* 12, pp. 39-48, 1995.
- [7] S. M. Hong, Y. B. Jun, S. J. Kim and S. Z. Song,

"Fuzzy Categorical Ideals in BCK-algebras," Int. J. Uncertainty, Fuzziness & Knowledge-Based Sys. 4, pp. 369-378, 1996.

- [8] S. M. Hong, Y. B. Jun and H. S. Kim, "Fuzzy Ideals in Near-rings," *Bull. Korean Math. Soc.* (to appear).
- [9] C. K. Hur and H. S. Kim, "On Fuzzy Relations of Near-rings," Far East J. Math. Sci. Special Part II, pp. 245-252, 1997
- [10] Y. B. Jun and H. S. Kim, "On Fuzzy Prime Ideals under Near-rings Homomorphisms (submitted)".
- [11] C. K. Kim and H. S. Kim, "On Normalized Fuzzy Ideals of Near-rings," Far East J. Math. Sci. Special Part III, pp. 307-316, 1997.
- [12] S. D. Kim and H. S. Kim, "On Fuzzy Ideals of Nearrings," *Bull. Korean Math. Soc.* 33, pp. 593-601, 1996.
- [13] R. Kumar, "Fuzzy Irreducible Ideals in Rings," Fuzzy Sets and Sys. 42, pp. 369-379, 1991.
- [14] R. Kumar, "Certain Fuzzy Ideals of Rings Redefined," Fuzzy Sets and Sys. 46, pp. 251-379, 1992.
- [15] N. Kuroki, "Fuzzy Bi-ideals in Semigroups," Comment. Math. Univ. St. Pauli. 28, pp. 17-21, 1979.
- [16] N. Kuroki, "On Fuzzy Ideals and Fuzzy Bi-ideals in Semigroups," Fuzy Sets and Sys. 5, pp. 203-215, 1981.
- [17] N. Kuroki, "Fuzzy Semiprime Ideals in Semigroups," Fuzzy Sets and Sys. 8, pp. 71-79, 1981.
- [18] W. Liu, "Fuzzy Invariant Subgroups and Fuzzy Ideals," Fuzzy Sets and Sys. 8, pp. 133-139, 1982.
- [19] D. S. Malik, "Fuzzy ideals of artinian rings," Fuzzy Sets and Sys. 37, pp. 111-115, 1990.
- [20] R. G. McLean and H. Kummer, "Fuzzy ideals in semigroups," Fuzzy Sets and Sys. 48, pp. 137-140, 1992.
- [21] X. Ougen, "Fuzzy BCK-algebras," Math. Japonica, 36, pp. 935-942, 1991.
- [22] A. Rosenfeld, "Fuzzy Groups," J. Math. Anal. Appl. 35, pp. 512-517, 1971.

[23] Z. Yue, "Prime L-fuzzy Ideals and Primary L-fuzzy Ideals," Fuzzy Sets and Sys. 27, pp. 345-350, 1988.

백승일(Seung Il Baik)

1968년 : 연세대학교 수학과 졸업

1973년 : 연세대학교 대학원 수학과 졸 업(석사)

1985년 : 연세대학교 대학원 수학과 졸 업(박사)

1973년~1978년 : 제주대학교 수학과 조교수

1978년~현재 : 카톨릭대학교 수학과 교수

김 영희(Young Hee Kim) 정회원

1975년 : 연세대학교 수학과 졸업

1979년 : 연세대학교 대학원 수학과 졸 업(석사)

1986년 : 연세대학교 대학원 수학과 졸 업(박사)

1983년~현재 : 충북대학교 수학과 교수

김희식(Hee Sik Kim)

1981년 : 연세대학교 수학과 졸업(석사) 1987년 : 연세대학교 수학과 졸업(박사) 1982년~1997년 : 충북대학교 수학교육 과, 전임강사~교수

1991년~1992년 : Univ. of Alabama 연구 1998년~현재 : 한양대학교 수학과 교수

주관심분야: 퍼지대수, BCK-대수, 순서론, 반환론