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A Fuzzy C Elliptic Shells Clustering
Daijin Kim

Department of Computer Engineering, DongA University

ABSTRACT

This paper presents a fuzzy c elliptic shells algorithm that detects clusters that can be expressed by
hyperellipsoidal shells. The algorithm is computationally efficient since the prototypes of shell clusters
are determined by a simple matrix inversion instead of by solving several nonlinear equations. The al-
gorithm also works when the detected shells are partial the optimal number of clusters is unknown in-
itially. A set of simulation results validates the proposed clustering method.

1. Introduction

Many fuzzy clustering algorithms suggested are bas-
ed on an iterative method that minimizes an object
function (based on an distance measure) iteratively in
order to derive an successful partition. The shapes of
partitions depend on either the norm used to define the
distances or the kind of cluster prototypes used. For ex-
ample, the k-means algorithm finds clusters of hy-
perspherical
However, the proposed algorithms are not suitable for

shapes using the Euclidean distance.
detecting clusters with hollow interiors.

Recently, Dave[1] suggested a fuzzy c-shells (FCS) al-
gorithm that detects clusters of circular arcs. The al-
gorithm has also been generalized to the case of elliptical
shells. However, the FCS algorithm requires an extensive
amount of computation since it uses the Newton's
method to solve two coupled nonlinear equations for the
center and radius of each cluster in each iteration. Krish-
napuram et al.[2] proposed an fuzzy c spherical shells
(FCSS) algorithm that overcomes the computational bur-
den arising from Newton's method by computing the pro-
totypes ffom a simple matrix inversion. However, the al-
gorithm can detect only the clusters of circular arcs. We
extend the FCSS algorithm to detect clusters of elliptic
arcs (including circular arcs), which is called as a fuzzy c
elliptic shells (FCES) algorithm.

This paper is organized as follows. Section 2
presents the fuzzy c elliptic shells algorithm and in-
troduces an estimation method of optimal prototypes.

Section 3 describes a way of determining the op-
timum number of clusters. Section 4 shows simu-
lation results using several synthetic images. Finally,
a conclusion is drawn.

2. Fuzzy C Eliiptic Shells Algorithm

Assume that each cluster represents a p-di-
mensional hyperellipsoidal shell. Then, the prototypes
A; consist of three parameters (¢, r, A;), where ¢; is
the center of the hyperellipsoid, r, is the size, and A;
is a pxp positive definite matrix characterizing the
eccentricity and orientation of the ellipsoid. The dis-
tance d; of a feature point x; from the ith hy-

perellipsoidal shell prototype 4; is defined as

dj=d%x;, 4)
=((x; ;) Ai(x; ~¢)-r? )]

Therefore, the value of distance decreases as the xa;
is close to the specific hyperellipsoid.

We define the objective function to be minimized
when the degree that x; belongs to a cluster A is fuzzy as

K N
J(L, U)Zz:,zl (ﬂij)mdi;z' (2)
i1 j=
where K is the total number of clusters, N is the total
number of feature vectors, L=(Ai, 4, -+, &), mE]1,
=) is a weighting exponent called the fuzzifier, and
U=[u;] is a K XN matrix called the fuzzy K-partition
matrix[3] satisfying the following two conditions:
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Here p;€=[0, 1] is the grade of membership of the fea
ture point x; into a cluster A..

In order to minimize the objective function in Eq.
(2), we rewrite the distance in Eq. (1) as

d;=pI'M;p,+vIp +b;, 4)
where
: X
by =x[A;x;, v;=2b;y;, y;=1,
~A; +A])¢
M, =y, )','T, b= cTA ¢, —r2 )

By combining Eq. (5) into Eq. (2), Eq. (2) can be
rewritten as

JL,U)= 22@1,, (6

i=lj=

- (pfM; p,+vIp,+b;)

Assuming that the vectors p; are independent of
each other, the vectors p; that minimize the objective
function J(L, U) must satisfy the following condition.

N
D) QM pi+v)=0 ¢
=
If we define
Moo N .
=}L(.uz]) M;, w 22(,”:‘]‘) Yi (8)
Pl =
the solution of Eq. (7) is given as
Yy
p=-HY'w ©

By equating Eq. (9) to Eq. (5), we can obtain the
center ¢; and the size r; of the prototype A.

One more parameter A; of the prototype 4; can be
estimated by using the Dave's adaptive norm theorem
[4]). According to the theorem, for fixed m and det(A))
=p,, the estimated value A; is a local minimum of the
functional

[o: X det(S)1¥" (S,)!, 1<i<K (10)
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where

S Z(luz] ” (x C]) (xj -—Cj)T (11)
where

Dz; z[(xj_cj)TAi(xj_cj)]Vz (12)

Note that S; is the cluster scatter matrix of distances
of point x; from the shells and D; is the distance of
point x; from the cluster center ¢. In the simulations, p;
=det(A,)=1 is chosen for keeping the volume under the
geometric transformations constant and an identity ma
trix / is used for the initial value of A..

The fuzzy K-partition matrix U is updated by the
Bezdek's formula[3] as

r

1 if 1=
( 'J )m Y
Z Q)
;=10 if I #@and \/iEI7 a3)
K

Su;=1 if I #®and Viel,

=1

where I={1<i<K, d;/=0}, and I={1, 2, -,
K}-I,. They are the sets of points located just on
the shells.
norm of the difference between two consecutive par

The stop condition is the Frobenius

tition matrix |U-U""| is less than a predefined in-
finitesimal €. The fuzzy c elliptic shells algorithm is
given below.
The Fuzzy C Elliptic Shells Algorithm
Fix the number of clusters K;
Fix the fuzzifier constant m=2;
Initialize U to U” by fuzzy k-means algorithm;
Initialize A, to an identity matrix I,.,;
Set iteration counter /=1;
Repeat
Calculate H; and w; for each cluster A; using Eq. (8);
Calculate p/ for each cluster A, using Eq. (9);
Estimate ¢/ and r/ for each cluster A; using Eq. (5)
and (9);
Calculate S/ and D,/ for each cluster A; using Eq.
(11) and (12);
Estimate A/ for each cluster A, using Eq. (10);
Update U, using Eq. (13);
Increment iteration count /;
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Until (UY-U <é);

3. Determination of the Optimal
Number of Clusters

The optimum number of clusters is determined as
the one that satisfies the cluster validity criteria best.
Often, fuzzy hypervolume, average partition density,
or average shell thickness are used as the validity cri-
teria of shell clusters[5]. In this paper, the average
shell thickness is chosen as the validity criteria due
to its computational simplicity. In fuzzy case, the av-
erage shell thickness is defined as

ﬁ(;uij)m ((xj —c )y Ai(xj -¢;)-r??

riZ,(,uij )y

7= (14)

An overall validity measure over the all clusters is
calculated by adding the individual average shell
thickness as

r=37T (15)

VN

H

i

The determination method progressively clusters
the input data starting from the overestimated number
of clusters Ki... We apply the FCES algorithm with
K=K,.. After the algorithm converges, two com-
patible clusters A; and A; that satisfy the following con
ditions are merged into one. Whenever the merging
occurs, the value of K is reduced by one.

|ci—¢;|<& and [r;—r;|<g, and |A;-A;]| <& (16)

Next, a cluster is a good one when the thickness of
the cluster is less than an threshold value (Zmi,) and
the number of points in the cluster is sufficiently
large as

T, <T

; min a0d N; >N a7

min

where Nmi,,=L is often chosen.
K+1

Next, all points that are near to the good cluster
(satisfying Eq. (18)) are removed from the input data
temporarily in order to reduce the computational effort.

|((xi_CC)TAi(xj —¢,)-rH| <Dy, (18)
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Next, the clusters having too small number of
points are eliminated from the cluster set and the
number of clusters K is reduced by the number of the
eliminated clusters. The FCES algorithm is applied
for the reduced number of K again. This process will
be repeated until no more merging, removing, and el-
imination occurs, i.e. until the value of K can no
longer be reduced.

4, Simulation Results

The FCES algorithm was tested using six two-di-
mensional radnomly generated synthetic data with
the circles and ellipses. Each data point has an po-
sition error of +=10% from the original position
along the x and y axis. Experimental parameters
used are m=2, £=6=£=0.01, and K,,=10. All oth-
er parameters are determined experimentally. In
each figure, each clusters are represented by dif-
ferent symbols and each point is assigned to the
cluster with the maximum value of membership.
When the clusters are separated each other as in
Fig. 1 and 3, the FCES algorithm works perfectly
without misclassifications. When the clusters are
crossed each other as in Fig. 2 and 4, some points
near to the crossings are misassigned. Simulation
result shows that the membership values of points
near to the crossings are similar each other and the
values are close to the inverse of the number of to-
tal crossed clusters. Thus, it is reasonable to decide
that some points near to the crossings are common
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Fig. 1. Result of FCES for one ellipse and two cirlces.
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to all the crossed clusters rather than to assign a
cluster with the maximum membership value. Fig. S
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Fig. 3. Result of FCES for a face.
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Fig. 4. Result of FCES for three ellipses.
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shows that the FCES algorithm also works well
when the input data is given partially. Some errors
occur where two ellipses are crossed. (One is a real
one that is represented by input data and another is
an imaginary one that is obtained by reflecting the
real one on the x-axis). In this case, it is reasonable
to decide that those error points are really er-
roneous. Fig. 6 shows a little errors compared to
the previous cases. This is because there exists non-
symmetric clusters, which violates the assumption
that the clusters are symmetric when A; is estimated.
Table 1 shows the comparison results between the
real parameters and estimated parameters by the
FCES algorithm. The number of clusters is det-
ermined correctly in all cases and the estimated pro-
totypes are nearly same as those of true prototypes.
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Fig. 5. Result of FCES for five partial circles.
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Fig. 6. Result of FCES for a fish.
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Table 1. Comparison of the real and estimated parameters

Real parameters

Estimated parameters

~

< £ Ai /éi '/'\l A‘

A (-2.0, 0.0) 1.0 (1.0, 0.0, 0.0, 1.0) (-2.01, -0.01) 1.01 (0.93, 0.02, 0.02, 1.07)

Fig. 1 4, (2.0, 0.0) 1.0 (1.0, 0.0, 0.0, 1.0) (2.01, 0.01) 1.00 (0.93, 0.02, 0.02, 1.07)
A (0.0, 0.0) 2.8 (0.5, 0.0, 0.0, 2.0) (-0.00, -0.00) 2.83 (0.46, -0.01, -0.01, 2.16)

A (0.0, 00) 10 (1.0, 00, 00, 1.0)  (-0.00, -0.00) 1.00  (0.98, 0.00, 0.00, 1.02)

A (15,00) 10 (1.0, 00, 00, 1.0)  (1.50, 0.00) 1.00 (0.94, 0.03, 0.03, 1.06)

Fig. 2 A  (-15 00) 10 (10, 00, 00, 1.0)  (-149, 0.01) 100  (0.90, 0.04, 0.04, 1.12)
Ag 0.75, -1.0) 1.0 (1.0, 0.0, 0.0, 1.0) 0.75, -1.01) 1.01 (099, -0.07, -0.07, 1.02)

A (075, -10) 10 (1.0, 00, 00, 1.0)  (-0.74, -099) 099  (0.99, -0.09, -0.09, 1.02)

A 0.0, 00) 50 (15 00,00, 1.5  (0.00, 0.01) 490 (159, -0.01, -0.01, 1.63)

A (20,225 07 (05, 00,00, 20) (201, 220) 071  (0.51, -0.03, -0.03, 1.95)

Fig. 3 A4 (20,225 07 (05, 00, 00, 20) (201, 225) 0.71 (0.55, 0.13, 0.13 1.84)
A (00,000 14 (20, 00, 00, 05) (001, -001) 1.42 (1.95, 0.09, 0.09, 0.51)

As 0.0, -3.5) 14 (0.5, 0.0, 0.0, 2.0) (0.04, -3.38) 1.52 (0.69, -0.13, -0.13, 1.88)

A (0.0, 0.0) 28 (05, 00, 00, 20) (003, 001) 282  (0.56, 0.10, 0.10, 1.79)

Fig. 4 4, (20, 20) 14 (1.4, -07, 0.7, 1.4) (200, -1.99) 142 (128, -0.73, -0.73, 1.19)
A (20,20) 14 (14, 07,07, 14) (200, 1.99) 142  (1.25, 0.89, 0.89, 1.44)

A 0.0, 0.0) 20 (10, 00, 0.0, 1.0)  (0.00, -0.00) 2.01 (1.14, 0.04, 0.04, 0.87)

A, (-3.0, 0.0) 2.0 (1.0, 0.0, 0.0, 1.0) (-3.01, 0.01) 2.01 (1.03, -0.19, -0.19, 1.00)

Fig. 5 A (3.0, 0.0) 20 (1.0, 00, 00, 1.0)  (2.99, -0.02) 1.98 (0.97, 0.23, 0.23, 1.09)
A (60,00) 20 (1.0, 00, 00, 1.0)  (-6.02, -0.06) 2.05 (0.86, 0.11, 0.11, 1.17)

s (6.0, 0.0) 20 (10, 00, 00, 1.0) (601, -0.04) 203  (0.83, -0.16, -0.16, 1.23)

A 0.0, 0.0) 35 (0.33, 6.0, 0.0, 3.0) (0.04, -0.04) 3.46 (0.26, -0.03, -0.03, 3.13)

Fig. 6 A (6.0, 0.0) 14 (2.0, 0.0, 0.0, 0.5) (6.02, 0.01) 143 (1.72, 0.04, 0.04, 0.58)
’ Aa (-0.5, 2.5) 1.4 (05, -0.25, -0.25, 2.0) (-0.51, 2.51) 142 (0.57, -0.31, -0.31, 1.97)
A (05,-25) 14 (05, 025, 025 20) (048, -2.49) 141 (0.66, 0.34, 0.34, 1.87)

5. Conclusion

The proposed FCES algorithm is computationally ef-
ficient because it does not requrie to solve two coupled
nonlinear equations for the center and radius of each
cluster in each iteration and the eccentricity matrix is
estimated from a closed functional. Also, it worked
when the optimum number of cluster are not predet-
ermined. The FCES algorithm can be further extended
to detect other objects of arbitrary shapes simply by de-
fining their corresponding gecometric prototypes. One
problem to be pursuit is how to determine the al-
gorithmic execution parameters automatically.
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