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ABSTRACT

A method of estimating probability density using regression tools
is presented here. It is based on equal-length binning and locally
weighted approximate likelihood for bin counts. The method is partic-
ularly useful for densities with bounded supports, where it automati-
cally corrects edge effects without using boundary kernels.

Key Words : Density estimation, boundary effects, likelihood-based local
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1. INTRODUCTION

Nonparametric density and regression function estimation are two main
subjects of kernel smoothing. One of the major challenges of these problems
has been developing methods that correct edge effects when density or re-
gression function has bounded support. Use of boundary kernels (e.g. Rice
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1984, Miiller 1991) is perhaps the most well-known resolution. One of the
unappealing features of this approach is that one needs to use different kernel
function for each point of evaluation near boundaries. In regression setting,
there is a popular technique of local linear smoothing (e.g. Fan 1993, Fan
and Gijbels 1992) which is only minimally influenced by edge effects without
using boundary kernels. An interesting question is: can one adapt the idea of
local linear regression to density estimation to automatically accommodate
edge effects?

In this note we present a methodology which allows regression techniques
to be directly applicable to estimating density. It is particularly useful to
resolve the aforementioned difficulty. This is illustrated in Figure 1 which is
based on the suicide data of Copas and Fryer (1980) given in Table 2.1 of
Silverman (1986). The dashed curve is the ordinary kernel density estimate,
and the solid one the result of applying the method discussed below, with
a histogram represented by dots, and circles on the bottom representing the
original data. We can imagine that the solid curve is a considerably improved
estimate of the underlying density at and near the origin.
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Figure 1. Ordinary kernel density estimate (dashed curve) and Poisson
likelihood-based kernel density estimate (defined in (2.1); solid curve) with
histogram (represented by dots) for the suicide data (n = 86, h = 100,
Epanechnikov kernel).
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The method starts with equal-length binning on the data space and record-
ing the bin frequencies. The main idea is to note that the relative bin fre-
quencies in density scale resembles a regression data in the sense that (bin
frequency in density scale) = (density) + (error), and that the distribution of
each bin count is approximately Poisson if the bin length reduces to zero at a
proper speed. We point out that the operation of performing the likelihood-
based local linear regression (Fan, Heckman and Wand 1995) with Poisson
likelihood and the canonical link (log function in this case) successfully es-
timates the target density. In particular, the procedure always produces
nonnegative estimates despite of using regression techniques, which may be
tailored further to integrate to one by proper scaling. Furthermore, with-
out using boundary kernels it accommodates edge effects particularly well
as illustrated in Figure 1, and allows increased computational speed through
equal-length binning. Details of the methodology will be given in Section 2,
and illustrated numerically in Section 3 where the method is shown to out-
perform the optimal boundary kernel estimator (Miiller 1991). Theory will
be outlined in Section 4.

A different way of adapting local linear regression to density estimation
has been introduced by Jones (1993) where the empirical distribution function
or the Dirac delta function is used in place of response variable. Moreover,
the above binning idea to get "regression-like” data has been suggested by
Hall, Park and Turlach (1998). We note, however, that direct application of
local linear regression to the Dirac delta function or to the binned data as
suggested there would yield negative estimates.

2. METHODOLOGY

We observe independent and identically distributed X;, for 1 < j < n,
and wish to estimate their common probability density function f. Although
the same idea can apply to general supports, we consider in the sequel f with
bounded support since the method is particularly useful in this case. Further-
more, we suppose for the sake of definiteness that the density is supported
on [0,1]. The method we propose performs equal-length binning, and then,
treating each bin center and count as a data pair in regression smoothing, it
carries out local linear regression based on an approximate likelihood of the
bin counts.
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Specifically, for a given ¢ > 1 let m = [n/c] be the number of bins of length
1/m where [a] denotes the greatest integer not exceeding a, let N; denote the
number of X;’s falling in the i-th bin, and write z; for the i-th bin center. We
have now the data (z;, V;) for 1 < i < m. Let n(z) = log{nf(z)/m}. Treating
Nj’s as if they were independent and had Poisson distribution with mean
e"®) we have the approximate likelihood 37, Q(e"®); N;) where Qv;y) =
ylogv—wv. Local linear kernel regression based on this approximate likelihood
suggests

filz) = meP@ /n (2.1)

where fy(z) together with () maximizes the locally kernel-weighted ap-
proximate likelihood

Q(exp{Bo + Bu(z: — x)}; Ni)K{(z: — z)/h} (2.2)

m
i=1

)

with respect to (o, 31), K is a second-order kernel, and h a bandwidth. If all
the bins with centers belonging to the smoothing interval [z — h, z + h]N[0, 1]
are empty, then there exists no maximizer of (2.2). In this case we define
fi(z) = 0. Note that £, is nonnegative, while it may not integrate to one.
A bona fide density may be obtained by proper scaling, i.e., dividing f; by
ffl(x)dx. We call it f.

Suppose that the kernel K is a probability density with support [—1,1].
Let T = I(z,h) = [(z — 1)/h,z/h] N [-1,1}, v; = v;(T) = [;2?K(z)dz, and
Ki(z) = (vova — v3) Yy — 211)K(2). Tt turns out that the function K
produces "actual” weights applied to N;’s. As h goes to zero, the interval
I(z, h) reduces to [—1,1] for an interior point = € [h,1 —~ k], and to [~1,¢]
or [—cp, 1] for a boundary point of the form c;h or 1 — c2h (0 < ¢1,¢0 < 1).
Write k1 = f; 22K, (2)dz, k2 = [;{K1(z)}?dz. Here we suppress dependence
of k; and Kz on z. In fact, k; and s, reduce to [', 22K (z)dz and [, K
respectively when « is an interior point. Now, the estimator f; has pointwise
asymptotic bias and variance,

asymp. bias { fi(2)} = }h’s1 f(z){log f (z)}"
asymp. var { f1(z)} = (nh) ko f(z) . (2.3)

If we let ko = {[}, 22K (2)dz}{f}(log f(2))"f(z)dz}, then the pointwise
asymptotic bias of the scaled version f is given by
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asymp. bias { f2(z)} = 1r2f(z){x1(log f(2))" — Ko} . (2.4)

The asymptotic variance of fg turns out to be the same as that of f;.
Details will be given in Section 4.

Some conclusions may be drawn from (2.3) and (2.4). Note particularly
that for both estimators O(h?) bias is retained right up to the ends of [0, 1]
without boundary kernels being used. Furthermore, the kernel function need
not be symmetric for (2.3) and (2.4). This is mainly because K; has zero first
moment even though K is not symmetric. These features are not shared by
other methods for density estimation. For proper comparison with the ordi-
nary kernel estimator for an interior point, let us assume that K is symmetric
(otherwise the ordinary kernel estimator would have O(h) bias even for an
interior point). Then, in comparison with the ordinary kernel estimator, we
note that variance is unchanged, while bias is slightly changed with f(log f)”
for f; and f{(log f)" — fi(log f(2))"f(2)dz} for f, now playing the role of f".
This means that the bias formula of f; or f, has additional term —(f’/f)%f or
—(f'/ £)*f - f fi(log f(2))" f(2)dz respectively. In case of a truncated normal
density f (see p; in Section 3 for example), the bias coefficient of f; is zero
since (log f)" is constant.

Note also that the variance components of f; and f» have not been inflated
(to first order) by binning, i.e., using less number m = [n/c] < n of data in
the smoothing step. Moreover, the choice of ¢ does not affect first-order
properties of the estimator. It will influence only second-order properties.

Our approach may be applicable to estimating derivatives of the density
function. In fact, $;(z) is a consistent estimator of /(z), and so f'(z) may be
estimated by m3,(x)e’(® /n. Similarly, estimators of higher order derivatives
could be obtained by fitting locally higher order polynomial (instead of linear)
regression.

3. NUMERICAL EXPERIMENTS

We consider 500 pseudo samples of size 100. Those are generated from two
population densities: (i) a truncated normal with density p,(z) = ¢,¢{6(z —
) Hpo,y(z), (ii) a folded normal with density py(z) = ca[¢{4(z — 0.3)} +
¢{4(z + 0.3)}]1jo,1)(x) where ¢ is the standard normal density function and
¢1, Co are the constants to make p;, p; integrate to one. Note that p; has low
density at both boundaries, while p, has high density at the left boundary.

95
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We choose Epanechnikov kernel K (z) = 3(1—2?)I(|z| < 1). Our preliminary
investigation shows that f> dominates f1, which leads us to focus on the scaled
version here. The number of bins is m = 25. We have tried other values of
m(20 ~ 30), but found that the performance of f» is not sensitive to the choice
of m in the range. We compare f2 with the scaled version of the so called
optimal boundary kernel estimator (BKE) as proposed in Miiller (1991).

Figure 2 depicts, for a simulated dataset from (a) the truncated normal p;
and (b) the folded normal p;, the true density denoted by solid curve, BKE
and f, represented by dots and dashes respectively. The bandwidths used
for BKE and f, are those minimising mean integrated squared error (MISE).
Figure 3 shows Monte Carlo estimates MISE as a function of bandwidth. Note
that the minimum MISE of f; is roughly 65% for p; and 90% for p,y of that of
BKE. In particular, the MISEs of f, is less than those of BKE in the whole
range of bandwidths for p,, and in the range h > .15 for p;. A first thought
on the reason for f, being inferior in the range of smaller bandwidths may be
that it is due to presence of low density areas of p;. However, we found that it
is not true. In fact, reversely fz is superior at the low density areas near z = 0
and 1, mostly due to smaller variance. This can be explained as follows: in a
smoothlng interval there are 2mh binned data for fz regardless of how small
the density is, while BKE has approximately 2nhf{z) data. This means that
BKE is more sensitive to low density. The inferiority of f for py in the range
h < .15 is rather due to larger variance at high density areas. Comparing the
variances at £ = 0 and = = %, we found that the minimal variances of fz and
BKE in the range h < .15 are .00334 and .03042 respectively at z = 0, and
.06232 and .04400 at z = . The biases of both estimators are negligible in
that range of bandwidths.

roj—

4. TECHNICAL ARGUMENTS

Write b;(z, h) for the asymptotic biases of f; for i =1 and 2 given in (2.3)
and (2.4). We state a more explicit version of (2.3) and (2.4):

Vnh(ka f (2)) 72 {fi(z) — f(z) = bi(z, k) +o(h*)} =4 N(0,1). (4.1

The following regularity conditions are sufficient for (4.1):f has two contin-
uous derivatives and is nonzero on its support [0, 1]; K is a probability density
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Figure 2. Typical estimates representing BKE (dotted curve) and f2 (dashed
curve) with true density (solid curve) for (a) the truncated normal p, and (b)
the folded normal ps.
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Figure 3. Mean integrated squared errors of BKE (dashed) and f, (solid)
as a function of bandwidth based on 500 Monte Carlo samples of size n = 100
generated from (a) the truncated normal p; and (b) the folded normal p,.
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supported on [—1, 1]; n/m converges to some positive constant; and h = h,, —
0, nh® — oo as n — co. We will outline the proof of (4.1) for f; first. Put
fi(z, u) = n(z)+n'(z)(u ~z), and Ky(z) = (vore —17) (o2 — 1) K(2). Write
K(z) = (Ku1(2), K2(2))7, an(z) = (m/{nf(2)}, —hms. f'(z)/{nf(z)*})" and

let

Wa(z) = (mh)™2 3 {N; — ")} K { (2 — ) /h}.
i=1
In the sequel we will suppress z in all the notations. Derivation of (4.1) is
based on the following stochastic representation:

Vmh(Bo — 1) = oI W, + 0,(h). (4.2)

A proof of (4.2) follows lines similar to those in Fan, Heckman and Wand
(1995). Note that its derivation is rather simplified since (8%/8z%)Q(e%;y)
does not depend on the second argument y for £ > 2. The mean and variance
of afW, are now given by

E (aan)%ml/zh’S/znl (log f)" + o(m!/2R5/%) |

var (aXW,,) = mxry/(nf) + o(1). (4.3)

The results (4.3) can be obtained by using the facts E (N;) = nf(z;)/m +
O(1/n), cov (N;, N;) = nf(z;)/m+0O(1/m) for i = j, and —~nf(z;)f(z;)/m?+
O(1/m?) for i # j. Note also that in (4.3) there are integral approximation
errors of order O(m~/2h~1/2), which have been included in the remainders
since nh® — oco. Finally, cov (W,)~Y/2{W, — E (W,,)} converges in law to the
bivariate standard normal distribution. This can be verified easily by using
the moment generating function of multinomial distribution. This together
with (4.2) and (4.3) implies (4.1).
Now for f, it follows that

o f= £ [[h= D +o a7 (4

The integral term of (4.4) has negligible variance. This follows from the fact
that var (f; aIW,f) = O(h). This concludes the proof.
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