DOI QR코드

DOI QR Code

The Limiting Drift and Energy Dissipation Ratio for Shear Walls Based on Structural Testing

전단벽의 최소 층변위 및 에너지 소산성능

  • ;
  • ;
  • N.M.Hawins (University of Illonois at Urbana-Champaign. USA)
  • 서수연 (한양대 초대형구조시스템 연구센터) ;
  • 이리형 (한양대학교 건축공학부) ;
  • Published : 1998.12.01

Abstract

Recently, new experimental criteria for reinforced concrete frame structures in high seismic regions have been reported in United States. The objective of the criteria is to get more reliable test data which are valid to compare with other test data done by different researchers. The criteria precribe test method of specimens, analysis method of test data, and limiting values needed to specimens like drift angle, energey dissipation ratio, stiffness, and strength. These criteria might be usefel to get objective conclusion. Shear wall structures, which belong to one of earthquake resisting systems, also need this kind of criteria. But, the general response of shear wall structures is a little bit different from that of frame structures since shear wall restrains the horizontal displacement caused by horizontal force and increases the stiffness and strength. The objective of this paper is to propose a criterion for limiting drift and energy dissipation ratio of shear walls based on structural testing. These are the most important values for presenting the capacity of shear walls. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to the results for a suggested acceptance criteria that involve a limiting drift that is a function of aspect ratio and a limiting energy dissipation ratio that is a function of displacement ductility and damping.

현재 미국에서는 강한 지진지역에서의 골조구조에 대한 새로운 실험규정이 만들어지고 있으며, 이의 목적은 비교적 신뢰성이 높은 실험결과를 얻고 이들 실험결과를 다른 연구자들이 서로 이용 가능하도록 하는 것이다. 이 실험규정에서는 실험방법 뿐만 아니라, 실험후의 분석방법 특히, 실험체가 최소한 보유하여야 할 층위변각, 에너지 소산성능, 강성, 강도 등이 규정되어 있다. 이러한 지침이 설정됨으로 인하여, 여태까지 주관적으로 평가된 시험결과의 분석들이 비교적 객관적으로 평가될 수 있게 될 것으로 보여진다. 전단벽 구조 역시 지진저항에 매우 효과적인 시스템으로서, 이러한 실험지침이 필요하다. 그러나 전단벽 구조의 주 부재인 전단벽은 횡력에 의해서 발생하는 구조물의 횡변위를 억제시키고, 강성과강도를 증가시키는 역할을 하기 때문에 그 거동 특성이 골조주조와는 다소 다르다. 본 연구에서는 이러한 전단벽의 층변위와 에너지 소산성능에대하여 연구를 하고 구조실험시 요구된느 적정 값들을 제시하고자 하였다. 구조실험시(반복하중실험), 높은 지진지역의 전단벽 구조가 보유해야할 최소변형능력(횡변위)을 구하기 위해 기존 연구자들에 의해 실험된일련의실험자료들을 분석할 뿐만 아니라 전단벽을 켄틸레버로 이상화하여 층변위를 형상비, 변위 연성비로 관계로 나타내고, 현재 각 국가의 내진설계 규정에서 정하고 있는 건물의 층변위각을 고려하여 전단벽의 최소 층변위를 제시하였다. 또한 미국의 NEHRP 규준에서 규정하고 있는 소산에너지와 감쇠의 관계를 이용하고, 변위 연성비를 도입하여 구조실험시 요구되는 전단벽의 최소 소산에너지값을 제시하였다.

Keywords

References

  1. EERC Report No. UCB/EERC-91/15 Design guidline for ductility and drift limits Bertero, V.V.;Anderson, J.C.;Krawinkler, H.;Miranda, E.;Kajima research team
  2. Proceedings, Workshop I. University Extension Earthquake Resistant Reinforced Concrete Building Construction Bertero, V.V.
  3. Proposed Provisional Standard Acceptance Criteria for Moment Frames Based on Structural Testing ACI committee
  4. SP 84 ACI Earthquake Simulation Tests and Associated Experimental and Analytical Correlation Solution of One-Fifth Scale Model Bertero, V.V.(et al.)
  5. Research Bulletin Board. BB93 3 Seismic Displacement Amplification Factor in Uniform Building Code Uang, C. M.;Maarouf, A.
  6. Proceedings of Second world Conference on Earthquake Engineering v.2 Effects of inelastic Behavior on the response of simple systems to earthquake motions Veletos, A.S.;Newmark, N.M.
  7. Report No. NUREG/CR-6104, LA-12649-MS Shear Wall Ultimate Drift Limits Duffey, T. A.;Goldman, A.;Farrar, C. R.
  8. Bulletin of the New Zealand National Society for Earthquake Engineering v.22 no.3 Evaluation of Ductility of Structures and Structural Assemblages from Laboratory Testing Park, R.
  9. Proceedings of Ninth World Conference on Earthquake Engineering v.Ⅳ Experimental Study in Seismic Performance of Multistory Shear Wall with Flanged Cross Section Hiraishi, H.;Shiohara, H.;Kawashima, T.;Tomatsuri, H.;Kurosawa, A.;Budo, Y.
  10. EERC report No. UCB/EERC 75/23 Hysteretic Behavior of Reinforced Concrete Framed Shear Walls Wang, T.Y.;Bertero, V.V.;Popov, E.P.
  11. EERC report No. UCB/EERC 79/20 Hysteretic Behavior of Reinforced Concrete Structural Walls Vallenas, J.M.;Bertero, V.V.;Popov, E.P.
  12. US-Japan Quasi Static Test of Isolated Wall Planar Reinforced Conctere Structure, report to the NSF Morgan, B.J.;Hiraishi, H.
  13. Journal of Structural Engineering v.118 no.6 Ductility and Detailing Requirements of Bearing Wall Buildings Wallace J.W.;Moehle, J.P.
  14. NZS 4203 Code of Practice for General Structural Design and Design Loadings for Buildings Standard Association of New Zealand
  15. ATC-2 Report An Evaluation of a Response Spectrum Approach to the Seismic Design of Buildings ATC
  16. Report No. TM-5 809-10-1 Seismic Design for Essential Buildings DOD
  17. Earthquake Resistant Design for Engineers and Architects Dowrick, D.J.