The preparation of $alpha-sexithiophene$ thin films by organic molecular beam deposition method and their characteristics

유기 분자선 증착법(OMBD)에 의한 $alpha-sexithiophene$ 박막의 제조와 특성

  • Published : 1998.11.01

Abstract

$\alpha$-Sexithiophene ($\alpha$-6T) thin films were deposited by organic molecular beam deposition (OMBD) technique. The $\alpha$-6T was synthesized and purified by the sublimation method. The thin films of the $\alpha$-6T were deposited under various deposition conditions. The effects of deposition rate, substrate temperature, and vacuum pressure on the formation of these films have been studied. The molecular orientation, crystallinity, and surface morphology of $\alpha$-6T films were investigated with angle-resolved UV/visible absorption spectroscopy, X-ray diffractometry (XRD), and atomic force microscopy (AFM). It was found that the crystalline structure of $\alpha$-6T films was monoclinic and independent uppon substrate temperature, deposition rate, and deposition pressure. On the other hand, the $\alpha$-6T molecules in the film deposited at a low deposition rate, higher substrate temperature, and under a high vacuum tended to be aligned perpendicular to the substrate.

유기 박막 트렌지스터의 활성층으로 사용하기 위하여 공액성 소중합체인 $\alpha$ -sexithiophene($\alpha$-6T)이라는 시료를 가지고 유기 분자선 증착법(OMBD)을 이용하여 박막 을 제작하였으며 $\alpha$-6T박막의 성막 조건에 따른 박막의 분자 배향, 결정구조 그리고 표면 특성을 알아보기 위해 angle-resolved UV/visible absorption spectroscopy, X-ray diffractometry(XRD) 그리고 atomic force microscopy(AFM)를 이용하였으며 그 분석 결과 성막 조건에 관계없이 모두 monoclinic한 결정구조를 갖으나, 초고진공, 낮은 성막 속도, 기 판의 온도가 높은 조건일 경우 $\alpha$-6T 분자들이 기판에 수직적으로 배열한다는 것을 확일할 수 있었다.

Keywords

References

  1. Synth. Mat. v.1 A. G. Mac Diarmid;A. J. Heeger
  2. Synth. Mat. v.25 A. Tsumura;H. Koezuka;T. Ando
  3. Nature v.335 J. H. Burroughes;C. A. Jones;R. H. Friend
  4. Appl. Phys. Lett. v.62 H. Fuchigami;A. Tsumura;K. Kuramoto
  5. Rev. Mod. Phys. v.60 A. J. Heeger;S. Kivelson;J. R. Schreiffer;W. P. Su
  6. Solid State Commun. v.72 G. Horowitz;D. Fichou;X. Penh;Z. Xu;F. Garnier
  7. Adv. Mater v.2 F. Garnier;G. Horowitz;X. Peng;D. Fichou
  8. Appl. Phys. Lett. v.58 H. Akimichi;K. Waragai;S. Hotta;H. Kano;H. Sakaki
  9. Thin Solid Films v.111 S. Gleuis;G. Horowitz;G. Tourillon;F. Garnier
  10. Synth. Met. v.22 H. Tomozawa;D. Braun;S. Philips;A. J. Heeger;H. Koemer
  11. Science v.265 F. Garnier;R. Hajlaoni;A. Yassar;P. Srivastava
  12. J. Am. Chem. Soc. v.115 G. Horowitz;F. Deloffre;B. Servet;S. Ries;P. Alnof
  13. Chem. Mater. v.6 B. Servet;G. Horowitz;S. Ries;O. Lagorsse;P. Alnot;A. Yassar;F. Deloffre;P. Srivastava;R. Haj;aoui;P. Lang;F. Garnier
  14. Synth. Met. v.23 F. Garnier;G. Horowitz;D. Fichou
  15. Solid State Commun v.70 G. Horowitz;D. Fichou;F. Garnier
  16. Synth. Met. v.39 D. Fichou;G. Horowitz;B. Xu;F. Granier
  17. Science v.268 A. Dodabalapur;L. Torsi;H. E. Katz
  18. Jpn. J. Appl. Phys. v.28 M. Hara;H. Sasabe;A. Yamoda;A. F. Garito
  19. Jpn. J. Appl. Phys. v.30 H. Tada;K. Saiki;A. Koma
  20. J. Appl. Phys. v.67 A. J. Dahn;H. Hoshi;Y. Maruyama
  21. Appl. Phys. Lett. v.61 H. Tada;T. Kawaguchi;A. Koma-
  22. M. C. Petty;Langmuir-Blodett films: An introduction