A Molecular Dynamics Study on the Liquid-Glass-Crystalline Transition of Lennard-Jones System

한 Lennard-jones 시스템의 액체-유리-결정 전이에 관한 분자동역학 연구

  • Chang, Hyeon-Gu (School of Metallurgical and Materials Engineering, Sungkyunkwan Uinversity) ;
  • Lee, Jong-Gil (Dept. of Metallurgical and materials Engineering, Michigan Technological University) ;
  • Kim, Sun-Gwang (Materials Design laboratory, Korea Institute of Science and Technology)
  • 장현구 (성균관대학교 금속.재료공학부) ;
  • 이종길 (미시간 텍 대학교 금속.재료공학과) ;
  • 김순광 (한국과학기술연구원 재료설계연구실)
  • Published : 1998.08.01

Abstract

By means of constant- pressure molecular dynamics simulations, we studied the liquid- glass- crystalline transition of a system composed of Lennard- Jones particles with periodic boundary conditions. Atomic volume and enthalpy were calculated as functions of temperature during heating and cooling processes. The Wendt- Abraham ratio derived from radial distribution function and the angular distribution function characterizing short range order were analyzed to distinguish between liquid, glass and crystalline states. A liquid phase resulting from a slow heating of an initial fee crystal amorphized on fast quench, but it crystallized on slow quench. When slowly heated, the amorphous phase from fast quench crystallized into an fee structure. A system with free surface was shown to melt from the surface inward at a lower temperature than bulk system and to have a strong tendency for crystallization even during a fast quench from a liquid state.

정압분자동역학 시뮬레이션에 의하여 주기경계조건을 지닌 L-J 입자들로 구성된 계의 액체-유리-결정 전이를 연구하였다. 원자체적과 엔탈피는 가열 및 냉각과정에서 온도의 함수로 계산되었다. 반경분포함수로부터 유도된 Wendt-Abraham비와 단거리규칙도를 나타내는 각도분포함수를 분석하여 액체, 유리 및 결정상태를 구분하였다. 초기 fcc 결정을 가열하여 얻은 액체상은 급냉시에 비정질화하나 서냉시엔 결정화하였다. 급냉으로 생긴 유리는 다시 서서히 가열하면 fcc로 결정화하였다. 자유표면을 지닌결정은 표면에서부터 용해가 시작되어 벌크에 비하여 낮은 온도에서 녹고 냉각시에는 빠른 냉각속도에서도 결정화가 쉽게 일어나는 경향을 보였다.

Keywords

References

  1. J. Phys. C : Solid State Phys. v.11 J.Q.Broughton;L.V.Woodcock
  2. Chemistry and Physics of Nanostructures and Related Non-equilibrium Materials(ed. E. Ma et al.) J.K.Lee;B.K.Cheong;W.M.Kim;S.G.Kim
  3. Solid State Physics. 45, F.Yonezawa;H.Ehrenreich(ed.);D.Turnball(ed.)
  4. J. Chem. Soc. Faraday Trans. Ⅱ v.75 J.H.R.Clarke
  5. J. Chem. Phys. v.64 M.J.Mandell;J.P.McTague;A.Rahman
  6. J. Chem. Phys. v.71 C.S.Hsu;A.Rahman
  7. Phys. Rev. v.A1 B.J.Alder;T.E.Wainwright
  8. J. Chem. Phys. v.75 J.N.Cape;J.L.Finney;L.V.Woodcock
  9. J. Non-Cryst. Solids v.21 W.D.Kristensen
  10. Phys. Rev. Lett v.60 H.Jonsson;H.C.Andersom
  11. J. Chem. Phys. v.68 F.H.Stillinger;T.A.Weber
  12. J. Chem. Phys. v.72 H.C.Andersen
  13. Phys. Rev. v.45 M.Parrinello;A.Rahman
  14. MRS Symp. Proc v.230 K.A.Rubin
  15. J. Appl. Phys. v.69 N.Yamada;E.Ohno;K.Nishiuchi;N.Akahira
  16. J. Chem. Phys. v.76 W.C.Swope;H.C.Anderson;P.H.Berens;K.R.Wilson
  17. Phys. Rev. Lett. v.41 no.18 H.R.Wendt;F.F.Abraham
  18. Computer Simulation of Liquids M.P.Allen;D.J.Tildesley
  19. Chem. Phys. Lett. v.107 A.D.J.Haymet
  20. Spring series in Solid-State Science v.46 Topological Disorder in Condensed Matter M.Kimura;F.Yonezawa;F.Yonezawa(ed.);T.Ninomiya(ed.)
  21. J. Chem. Phys. v.87 S.K.Lai;S. Wang;K.P.Wang
  22. Solid State Physics v.30 G.S.Cargill Ⅲ;H.Ehrenreich(ed.);F.Seitz(ed.);D.Turnbull(ed.)
  23. J. Phys. F : Met. Phys. v.12 J.Hafner
  24. Phase Transitions in Surface Films 2 v.267 J.F.Van der Veen;H.Taub(ed.);G.Torzo(ed.);H.J.Lauter(ed.);S.C.Fain, Jr(ed.)
  25. Science v.235 Y.T.Cheng;W.L.Johnson
  26. Phys. Stat. Sol. (a) v.13 M.R.Bennett;J.G.Wright
  27. J. Appl. Phys. v.67 H.Minemura;H.Andoh;N.Tsuboi;Y.Maeda;Y.Sato
  28. J. Chem. Phys. v.87 M. S.Watanabe;K.Tsumuraya
  29. J. Chem. Phys. v.84 S.Nose;F.Yonezawa
  30. Modelling and Simulation for Materials Disign (CMCMD '96) M.Shimono;H.Onodera;S.Nishijima(ed.);H.Onodera(ed.)