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Abstract

An optimal algorithm is presented for feasibility test and scheduling of real-time tasks where tasks are preemptable and
created dynamically. Each task has an arbitrary creation time, ready time, maximum execution time, and deadline. Feasibility
test and scheduling are conducted via the same algorithm. Time complexity of the algorithm is O(n) for each newly created
task where n is the number of tasks. This result improves the previous result of O(n log n). It is shown that the algorithm
can be used for scheduling tasks with different levels of importance. Time complexity of the algorithm for the problem is O(n%)

which improves the previous result of O(n2 log n).

I. Introduction

Real-time systems are important in a wide range of
applications such as defence control systems, intelligent
weapons, automated manufacturing systems, power plant
control systems, and so on. In such systems, each real-time
task has a requirement that it should be completed within its
timeing constraint called deadline. Violation of deadline may
result useless output or catastropic failure of the system.
Therefore, it is important to schedule real-time tasks so that
each of them is completed within its deadline. For a given set
of tasks, we have to test the feasibility that each of the tasks
can be completed within its deadline. If the task set is
feasible, we can make a scheduling. In static systems,
information of every task is available before scheduling.
Therefore, scheduling is static, that is, there is no addition or
removal of tasks after scheduling. In this case, scheduling can
be conducted off-line before execution of any task. In
dynamic systems, on the contrary, each task can be created
in an arbitrary time and information of a task is not available
until it is created. Therefore, scheduling should be dynamic.
That is, whenever a new task is created, feasibility should be
tested for the task set including the new task, and if feasibile
all tasks should be rescheduled. This paper presents an
algorithm for feasibility test and scheduling of preemptable
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real-time tasks in dynamic systems.

Tasks in real-time systems can be periodic or aperiodic.
For example, in process control systems, tasks periodically
read input data and respond with appropriate actions. In
automatic assembling systems, on the contrary, tasks respond
to aperiodic events such as arriving various kinds of parts.
This paper addresses scheduling problem of aperiodic tasks.
For periodic tasks, rate monotonic scheduling algorithm is
commonly used due to its simplicity [9]. It gives fixed
priorities to tasks in the order of reverse of their periods. That
is, tasks with shorter periods have higher priorities. But this
algorithm can not fully utilize the processor. In the worst
case, the processor utilization can be reduced to 69%.

For aperiodic tasks, full processor utilization can be
achieved by scheduling tasks based on their deadlines [9].
However, scheduling algorithms for aperiodic tasks can also
be applied to periodic tasks as mentioned by Cheng et al. in
[2]. For example, a periodic task can be considered as a set
of subtasks, where each subtask coresponds to each period of
the task, and we only have to consider the subtasks within a
time between zero and the least-common-multiple of the
tasks’ periods. If the subtasks within the interval can be
scheduled by applying an algorithm for aperiodic tasks, all
the other subtasks of the periodic tasks can also be scheduled.

Each task has an arbitrary ready time, maximum execution
time, and deadline. A given set of tasks is said to be feasible
if they can be scheduled such that each task is started after
its ready time and completed within its deadline. A
scheduling is said to be optimal if it satisfies ready times and
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deadlines of all tasks for any feasible task set. As a result of
previous researches [1-7], the earliest deadline first (EDF)
scheduling was shown to be optimal [3,6]. Mok and
Dertouzos [5] showed that the least laxity first scheduling is
also optimal. Horn [10] presented a static algorithm to
schedule aperiodic tasks, but the time complexity was not
given. Cheng et al. [2] claimed that Horn’s algorithm is O(n%)
time complexity, where n is the number of tasks. Schwan and
Zhou developed a static algorithm of O(n°) time complexity.
They adapted binary search tree to-find an idle time slot for
each task. They claimed that if the task rejection rate is low
the time complexity is O(n log n). Kiin [4] presented a static
scheduling algorithm based on EDF scheduling. The
algorithm utilizes well-known heap data structure, and
improves the time complexity to O(n log n) regardless of the
rejection rate.

In dynamic systems, each newly created task should be
accepted if and only if the task set consisting of already
accepted tasks and the new task is feasible. Recently, Kim
and Lee [8] presented a dynamic scheduling algorithm of
O(log n). However, it does not conduct feasibility test for a
new task on its creation time but on the chance for its
execution. That is, the decision of acceptance of each newly
created task is delayed and made on the time that the new
task has higher priority then all other tasks already accepted
but not completed. Schwan and Zhou [7] presented a dynamic
scheduling algorithm with time complexity of O(n log n) for
each newly created task. For feasibility test and rescheduling,
a known O(n log n) static scheduling algorithm is applied to
a subset of ‘tasks. In the algorithm, a reserved time slot list
is used and a binary search tree is applied to find an idle time
slot for each created task. The decision of whether the new
task should be accepted for execution or rejected is made on
the creation time. But they ignore the current scheduling
information on feasibility test and rescheduling. Whenever a
new task is created, all the tasks within the duration of the
new task are rescheduled without utilization of the current
information.

The motivation of this paper is full utilization of the
current scheduling information to improve the time
complexity. If the newly created task can be added
successfully to the current scheduling, the task set including
the new task is feasible and the resulting scheduling is
accepted as the current scheduling. Otherwise, it is not
feasible and the new task is rejected. To fully utilize the
current information, two lists, task list and slot list, are
introduced. To reduce the time complexity, they are
interlinked each other, and the feasibility test and
rescheduling are completed by one-pass investigation of both
of them. The resulted algorithm improves the time complexity
of dynamic scheduling algorithm to O(n).

In real-time systems, tasks may have different levels of
importance, called priorities. If a given set of tasks is not

feasible we have to select a feasible subset of tasks, and tasks
with higher priorities are preferable. Any accepted task should
not result rejection of tasks with higher priorities than itself.
There is no known algorithm explicitly addressing the
problem. A strait forward algorithm for static systems can be
derived by applying static scheduling algorithms [4,7] in the
order of priorities. Then, time complexity will be O(n’ log n)
as shown in section 5. The second result of this paper is that
the presented algoritm can solve the problem in time
complexity of O(r’).

I1. Description of the Algorithm

The algorithm of Schwan and Zhou [7] is based on binary
search. They repeatedly apply binary search to find free time
slots for each task which should be rescheduled to make a
room for the newly created task. Therefore, the time
complexity is O(log n) » O(n) = O(n log n). The presented
algorithm improves the complexity by fully utilizing the
current scheduling information which is represented as
interlinked two lists. Whenever a new task is created,
feasibility test is accomplished at once through a linear search
of the lists. Rescheduling is accomplished through modifying
the lists during the linear search. This method improves the
complexity to O(n).

Time q 2 4 6 8

(a) the original schedule

ready time of T
Tme O { 2 4 6 8

Time 0 4 8 8

Time
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(e) merge adjancent slots

Fig. 1. Adjusting Time Solt List

The presented algorithm is based on the well-known EDF
scheduling. Each task can be created in an arbitary time, and
has an arbitrary ready time, maximum exection time, and
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deadline. Schedule information is described by interlinked
two lists, a list of accepted tasks and a list of time slots.
Accepted tasks are sorted on the task list based on deadlines
such that the head entry has the earliest deadline. A time slot
consists of begining time, ending time, and a pointer
designating a task on the task list. BEach time slot of the slot
list represents an actual. execution time slot for the task
designated by the slot. Time slots are sorted on the slot list
in the order of increasing time.

Rescheduling for a new task is accomplished by finding
sufficient slots, from the head of the slot list, for the
execution time of the task. If a slot is free, it is assigned for
the new task. If the task designated by a slot has deadline
later than the new task, it is also used for the new task, that
is, the new task preemts the designated task based on EDF
scheduling. When sufficient slots are found for the new task,
_the same procedure is applied for the preempted tasks in the
order of deadlines to fill up the preempted time. Fig. 1 shows
a typical example. If there is a task violating its deadline, the
new task should be rejected since it means that the increased
task set consisting of already accepted tasks and the new task
is not feasible. Otherwise, the increased task set is feasibile,
the new task is accepted, and the new schedule is used for
execution. Since the algorithm will be completed in one pass
search of the task list and slot list as shown later, time
complexity is improved. '

A task entry'has 3 attributes, ready (ready time), need
(necessary additional time to complete execution), and
deadline, and has additional 2 attributes, next and prev, to be
used for doubly linked list. A slot entry has 3 attributes,
begin (begining time), end (ending time), and task (poniter
: designating a task entry), and has additional 2 attributes, next
and prev, to be used for doubly linked list. As an example,
Fig. 2 describes the scheduling for the case of Fig. 1 (b). T(t)
denotes a task entry for task T where ¢ is the attribute need.
S(t,,t2) denotes a slot entry where £; and f; are the attributes
begin and end, respectively. The first slot S(0,1) is used for
execution of task A, §(1,2) is used for T, and so forth. The
entry A(l) means that task A requires additional slot of length
1 to complete its execution.

Ss2:4 Iﬂ‘ﬂ ST |

Fig. 2. Task List and Slot List

Slot List $:10,1)

Fig. 3 describes the rescheduling algorithm for each newly
created task, respectively, in a C-like language. For simplicity
in description of the algorithm, an additional task NullTask is
introduced such that ready = 0, need = infinite and deadline

= infinite. NullTask will be executed virtually whenever there

- is no task ready to be executed. Initially, the task list has

only NullTask, and the time slot list has only one entry such
that begin = 0, end = infinite, and task = NullTask.

Initial values of the accepted task list (TL) and the time slot list (SL):

TL has only one entry NullTask such that

ready = 0, need = infinite, and deadline = infinite;
SL has only one entry such that

begin = 0, end = infinite, task = NullTask;

Whenever a new task N with attributes ready (ready time), need {maximum
execution time), and deadline is created:

L1 duplicate TL and SL into TL2 and SL2, respectively, to recover them
on rejection of N;
L2 insert N into TL;

L3 SO = head of SL; TO = head of TL;
L4 while (the algorithm is not stopped) {
15 find the first task T, from TO, such that T.need > 0;
L6  if (T == NullTask) /* complete slot assignment for all tasks */
L7 accept N and stop the algorithm; .
L8 find the first slot S, from S0, such that

S.end > Tready and S.task.deadline > T.deadline;
L9  if (S.begin > T.deadline) /* violate deadline of T */
L10 reject N, recover TL and SL from TL2 and SL2, respectively, and

stop the algorithm;

L11  if (S.begin < T.ready) { /* T use the later part of S */

L12 .split S into S1 and S2 such as .
Sl.begin = S.begin, Sl.end = T.ready, S2.begin = T.ready, and
S2end = S.end; .

L13 Sltask = Stask; S2.task = S.task;

| L4 S =82

L5}

L16 if (S.begin + T.need < S.end) { /% T use the former part of S */

L17 split S into. S1 and S2 such as .

Slbegin = S.begin, Sl.end = S.begin + T.need,
S2.begin = Sbegin + T.need, and S2.end = S.end;

L18 Sltask = T; S2task = S.task;

L19 S2.task.need = S2.task.need + T.need;

L20 T.need = 0;

L21 S =85

122 TO = Tnext; SO = S2; .
L23  }else { /% T use the whole S */

L24 Staskneed = S.taskneed + (S.end.- S.begin);
L25 Stask = T}

L26 T.need = T.need - (S.end - S.begin);

L27 TO = T; SO = S.next;

128 }

129  if {S.prev.task == S.task) /* merge two slots */
L30 Sbegin = S.prev.begin, and remove S.prev from SL;
L31}

Fig. 3. Description of the Algorithm

(a) the original slot used for A

ready time of T ready time of T
{ : {

-(b) sufficient time for T (execution time of T = 1)

ready time of T

ready time of T
{ { :

(c) insufficient time for T (execution time of T = 5)

Note) deadline of T < deadline of A

Fig. 4. Task Preemption
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When a new task T is created, the algorithm examines slots
for preemption from the head of the slot list. If the ready
time of T is later than the end of the slot, or the designated
task of the slot has earlier deadline than 7, the next slot is
examined. Otherwise, T preempts the designated task. Fig. 4
shows an example that task T preempts task A. If the slot has
sufficient time for 7, the excess time is used for the original
task A as shown in Fig. 4 (b). Otherwise, the slot is used for
T as shown in Fig. 4 (c), and the lacking time for T will be
provided on examining following slots.

Task List

Slot List

Task List

Slot List

Task List

Slot List

Task List

Slot List

{d} the final loop

Fig. 5. Adjusting Sequence of Data Structures

For a typical example of the algorithm, an adjusting
sequence of data structures is shown in Fig. 5. Fig. 5 (a) is
the original schedule already accepted. Assume a new task T
is created, which has ready time 4, execution time of 5 time
units, and deadline earlier than A. At first, the algorithm
inserts T into the task list and finds a candidate slot for
preemption from the head of the slot list. The first slot $(0,2)
is skipped since T is not ready until the end of the slot. Since
the ready time 4 is on S(2,7) and T has earlier deadline than
the designated task A, S$(2,7) is splitted into two slots, $(2,4)
and S§(4,7), by the line L12 of Fig. 3. $(2,4) is used for the
original task A. §(4,7) is used for T by the line L25 as shown
in Fig. 5 (b). Then, the attribute need of the designated task
A is increased to 3, the preempted time, by the line L24, and
the attribute need of T is decreassed to 2 by the line L26. To
fill up additional 2 time units of T, the next slot S(7,infinite)

is splitted into S(7,9) and S(9,infinite), and 5(7,9) is used for
T by the line L18. Then, the attribute need of T becomes 0.
Since the two adjacent slots, S(4,7) and §(7,9), are used for
the same task 7, they are merged into S(4,9) as shown in Fig.
5 (c) by the line 140. The next task with a positive need
attribute is A. The first candidate slot for A is S(9,infinite),
and it is splitted into §(9,12) and S(12,infinite). S(9,12) is
used for A to fill up the preempted time as shown in Fig. 5
(d). There is no more task with positive need attribute except
NullTask and, therefore, the new task T is accepted and the
algorithm ends.

III. Correctness of the Algorithm

Correctness of the presented algorithm will be proven by
showing the output of the algorithm is identical to EDF
which was shown to be optimal [3,6]. The task list 7L of Fig.
3 is a sorted list of tasks based on.deadline. Initially, TL
contains NullTask only which is a virtual task with infinite
deadline. The slot list SL is a list of time slots in increasing
order. Initially, SL contains only one slot S(0, infinite)
indicating the whole time and assigned to NullTask. Since
each time slot assigned to NullTask means idle time, the
whole time is free.

The algorithm maintains 7L so that each task, except
NullTask, on TL has need attribute as 0. That is, no task on
TL need more time slots. Whenever a new task N is created,
it is inserted into 7L in the order of deadline (line L2). The
need attribute of N is the execution time of N. On the first
loop of L4, since N is the only task with positive need
attribute except NullTask, N will be selected on line L5. Line
L8 finds the first slot after the ready time of N and assigned
to a task with later deadline than N. That is, it finds a task
which can be preempted by N. If the slot begins after the
deadline of N (line L9), there is no more slot assigned to
tasks which can be preempted by N. Therefore, the whole
task set is not feasible and N should be rejected (line L10).
If the found slot overlaps the ready time of N (line L11), the
slot is splitted into two slots by the point of the N’s ready
time (line L12). Then the former slot is skipped and the later
slot can be reassigned to N (line L14).

Now we have a slot which can be reassigned to N. If the
slot is sufficient for N (line L16), a subslot needed for N is
reassigned to N and the remaining subslot is still assigned to
the original task (line L17 and L18). Otherwise, the whole
slot is reassingned to N and the amount of shortage can be
supplied on the following loops of line L4. If we can’t find
sufficient slots which can be reassigned for N on the
following loops, the whole set fo tasks is not feasible and N
will be rejected on line L10.

Whenever a slot is reassigned to N, the original task of the
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slot should be refilled the same amount of preempted time
(line L19 and L24) on the following loops. Since TL is sorted
based on deadline, the preempted tasks are located after the
preempting task on TL. Therefore, after N is completed, the
task found on line L5 will be the task with earliest deadline
among the preempted tasks and it can be refilled in the same
way of the above procedure on the following loops.
Moreover, the additional slots to be refilled for the tasks
should be found on the following slots of SL. If all tasks
except NullTask are satisfied ultimately, the whole task set is
‘feasible and the algorithm will be ended on line L7.
Otherwise, the whole task set is not feasible, N is rejected,
‘and TL and SL will be restored on line L10.

Therefore, the lines from L8 to L28 shows that N preempts
all tasks with later deadlines for the amount of execution
time. Each preempted task also preempts other tasks with
later deadlines than itself for the amount of preempted time.

~Consequently, the algorithm always selects the task with the
. earliest-deadline among tasks requiring additional time slots,
and finds the earliest candidate slot for the task. Therefore,
the algorithm satisfies EDF scheduling which was shown to
be optimal [3,6].

IV. Time Complexity

Initially, there is only one slot used for NullTask. Assume
that all tasks of the task list are created in increasing order
of deadlines. Then, there is no preemption of already
.accepted tasks and each task uses some parts of NullTask
slots. Since each task splits NullTask slots at most two times,
by the lines L12 and L17 of Fig. 3, the number of slots is
at most 2n + 1 where n is the number of tasks. For a given
set of tasks, the algorithm results the same slot list for any
creation sequence. Therefore, the number of slots is O(n) and
time complexity of L1 is O(n). Obviously, time complexity of
L2 is O(n). ’

Time complexities of L5 and L8 are O(n) for the loop L4
since the task list and slot list are examined in one pass
search for the whole loop. Time complexity of L10 is O(n).
Time complexity of any other line of the loop L4 is O(1) and
its time complexity for the whole loop is O(n) since the loop
is repeated in O(n) times. Therefore, time complexity of the
loop L4 is O(n). Consequently, time complexity of the
algorithm is O(n). ’

In addition to the on-line scheduling overhead, task

switching overhead should be considered. Basically, the
scheduling output of the presented algorithm is identical to
the basic EDF [6]. In the worst case, whenever a new task
is created, its priority is higher than the current task and it
preempts the current task. Obviously, the number of
resumptions is equal to the number of preemptions.

Therefore, the total number of context switchings is 2n and
this fact was proven by Dertouzos and Mok [11]. This
context switching ovethead is identical to the overhead of any
other algorithm based on EDF, including Schwan and Zhou’s
algorithm {7]. On the contrary, the least laxity first algorithm
causes heavy context switching overhead [5].

V. Scheduling Tasks with Priorities

In real-time systems, tasks may have different levels of
importance, called priorities. If a given set of tasks is not
feasible we have to select a feasible subset of tasks and tasks
with higher priorities are preferable than tasks with lower
priorities. Any accepted task should not result rejection of
tasks with higher priorities than itself. That is, when a task
with higher priority is created and the whole set of tasks is
not feasible, we have to give up some tasks with lower -
priorities even though they are already accepted and started.

There is no known algorithm explicitly addressing the
problem. A strait forward algorithm can be derived by
applying static scheduling algorithms. That is, for each task
in the order of priorities, it is accepted if and only if the set
of accepted tasks with the additional task is feasible. Then,
time complexity of the algorithm will be O(n® log n) since
there are known static scheduling algorithms of O(n log n)
[4,7] and the algorithm will be applied n times.

The presented algorithm also can not be applied directly
for the problem, but it can be used as follows. If we apply
the algorithm for each task in the order of priorities instead
of the order of task creation time, the scheduling meets the
requitement of the problem. Then, time complexity is
improved to O(r’) since the algorithm with time complexity
of O(n) is applied n times. In a system, tasks may not be
rejected if they are already started. In that case, we can apply
the algorithm for already started tasks at first, and then for
each task, not started, in the order of priorities.

VI. Conclusions

An optimal algorithm is presented for feasibility test and
scheduling of real-time tasks where tasks are preemptable and
created dynamically. Each task has an arbitrary creation time,
ready time, maximum execution time, and deadline.
Feasibility test and scheduling are conducted via the same
algorithm. Time complexity of the algorithm is O(n) for each
newly created task. This result improves the best previous
result of O(n log n). It is shown that the algorithm can be

“used directly for scheduling tasks with different levels of

importance, called priorities. Time complexity. of the
algorithm for the problem is O(n’) which improves the best
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previous result of O(n’ log n).
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