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The Application of Wavelets to Measured
Equation of Invariance

Byungje Lee, Youngki Cho, and Jaemin Lee

Abstract

The measured equation of invariance (MEI) method was introduced as a way to determine the electromagnetic fields scattered
from discrete objects. Unlike more traditional numerical methods, MEI method gives local equations and sparse matrices.
Therefore, the savings in storage and computing time by the MEI method over conventional methods are very substantial. In
this work, Haar wavelets are applied to the measured equation of invariance (MEI) to solve two-dimensional scattering problem.
We refer to "MEI method with wavelets” as “"Wavelet MEI method.” The proposed method leads to a significant saving in
the CPU time compared to the MEI method that does not use wavelets as metrons. The results presented in this work promise
that the Wavelet MEI method can give an accurate result quickly. We believe it is the first time that wavelets have been applied
in conjunction with the MEI method to solve this scattering problem.

I. Introduction

The MEI method, first proposed by K. K. Mei in 1992 [1],
is a technique that can be used to terminate a finite difference
(FD) mesh arbitrarily close to the object of interest, avoiding
the use of absorbing boundary conditions, which require the
mesh to extend beyond the region of interest, with increase
in computation time and storage memory. Initially, it was
applied to two-dimensional conducting objects. Subsequently,
it was applied to a broader class of problems [2]-[6]. Since
the MEI method still preserves the sparsity of finite
difference equations, it results in dramatic savings in
computing time and memory needs. As discussed in [2], the
time required to fill the matrix in the MEI method is roughly
O, where N is the number of unknowns on the boundary.
Since the matrix is sparse, the time required to invert the
matrix is small (O(N)). Thus the total computation time of
this method is dominated by the time required to fill the
matrix obtained by the integration process. This is in contrast
to the traditional method of moments (MoM) approach in
which the time required for the integration process to fill the
matrix is also O(NZ), but since the method leads to a fully
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dense matrix, the time required for the inversion is O(N?).

Since the MEI method spends most of the CPU time on
integration process to fill the matrix, the efficiency of the
method can be improved by accelerating the integration
process. For this reason, the integration with transform
techniques or variable step routines was suggested in [2]. In
this work, we propose a wavelet transform based technique to
further improve the computational efficiency of the MEI
method. The first paper on compactly supported orthonormal
wavelets appeared only 9 years ago [7]. Since then, wavelets
have been applied to solve a large class of problems in
various fields of mathematics, science, and engineering. The
wavelets are generated using dilation and translation of a
basis function. The properties and applications of wavelets
have been investigated extensively in [8], [9]. Wavelets have
been used to develop fast numerical algorithms in various
fields [10], [11]. Wavelets have also been used in many
electromagnetic applications [12]-[15]. Considering the
success of wavelets in various fields their application in
conjunction with the MEI method to electromagnetic field
problems is timely. The MEI method requires selection of a
set of metrons. In this paper, We will use compactly
supported orthogonal Haar wavelets as metrons.

IMT. Review of the Mei Method

In electromagnetic boundary-value problems, the governing
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differential equation is usually the Helmoltz equation:

(Vi+Yo (=0 ey
where k is the wavenumber. The solution of the Helmoltz
equation may be approached by an integral equation or a
differential equation formulation. In two-dimensional scatte-
ring from a conducting object, the integral solution to
equation (1) can be expressed in terms of a source J 7') on
the object boundary

o (= [c(N| GDdc @

where @ (7) is the scattered field, G(y| 7’) is the Green’s
function in free space and ¢ is the contour of the conducting
object. Equation (2) is an integral equation with unknown J(7")
and can be solved by the MoM. In the MoM approach, the
computation domain is limited in the exactly interested region
(object boundary).
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o,

Fig. 1. The five nodes in the computational mesh.

It is important that we recognize the fact that MoM is
limited in application to radiation and scattering from objects
that are electrically large. This is because that the cost of
storing, inverting, and computing matrix elements becomes
prohibitively large. If the solution region is divided into a
uniform mesh and a local configuration of nodes as shown in
Fig. 1, equation(l) can be approximated using central
difference to obtain

D1+ 0+ (FPai—4)0y+ 03+ 0,=0 3

where 4 is the separation between mesh points. This finite
difference (FD) equation is invariant to the location in space,
to the geometry of the problem, and the field of excitation.
From equation (3), we notice that only nearest neighboring
nodes affect the value of at each node. Hence application of
equation (3) to all free nodes in the solution region results a
set of simultaneous equation of the form

[Alle]l=[B] @

where [A] is a sparse matrix(it has many zero elements), [D]
is a column matrix consisting of the unknown values at the

free nodes, and [B] is a column matrix containing the known
values at the fixed nodes. In contrast to the MoM, equation
(4) can be solved relatively rapidly in terms of time per
unknown. Even though the sparsity is the appeal of the FD
method, finite difference meshes expend to some distance
away from the region of interest, which makes the size of
equation (4) very large. There is also no simple way to
terminate the computational mesh with reasonable accuracy
for unbounded problems. The ideal case would be to find a
set of equations limited to a small domain and still held the
sparsity of the matrix. The MEI method combines features of
both differential and integral based methods. Equation (3) can
be written more generally as

gai(pizo ®

where NN is the number of nodes and the «,’s represent
appropriate weights. Basically, the MEI method provides a
mean to select appropriate ¢,’s in equation (5) so that the
mesh need not be orthogonal. Thus, this allows the fields at
the nodes on the edge of the computational domain to be
related simply to points on the interior. Fig. 2 shows typical
configuration of nodes at the edge of the computational mesh.
Furthermore, MEI method maintains that equation (5) is local
dependent, geometry specific, and invariant to the field of
excitation. To illustrate the technique, consider the
configuration of the nodes (NN=3) shown in Fig. 2(a). One

seeks ¢;’s such that
=3
NZ a;0 ;=0 ©)

Since equation (6) is a homogeneous equation, one of the
weights (e.g., ;) may be chosen arbitrarily. The remaining

three weights are determined via three equations. These
equations are obtained by using the measuring functions. In
the MEI method, the measuring functions are derived from
the metrons using equation (2)

q)o
@, _—r—w @, @, o—,[ @,
@, @,

(a) ®

Fig. 2. Geometry of nodes at the edge of the
computational mesh.

0" (p)= f GCr | P 7)de e

where the current densities J.( 7)), k=1,2, ..., M, are named
the metrons, and @ are named the measuring functions. It
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is noticed that each metron gives rise to the measuring
function and is not used to present the solutions. J(7")
provides the equation with information about the geometry of
the object, and G (7 | y") provides the information about the
differential operator and the exterior boundary conditions. ok
is not the specific solution we are looking for, but, it may be
the scattered field of some unknown incident field. In the
MoM, the unknown current J,( 7*) should be expanded to
solve equation (2) with known basis function on the surface
of the object because the accuracy of the MoM depends on
the ability of the basis functions. Since equation (7) was
derived by using equation (2), one may think that the metrons
J.(7") in equation (7) are also used to represent an approxi-
mation to the exact current distribution. This is not true
because the MEI method suggests that the calculated solution
is represented not by a linear combination of metrons,
representing an expansion of the current distribution, but
rather by a linear combination of measuring solutions,
representing an expansion of the scattered field at the mesh
edges. Assuming o,=1, the remaining NN coefficients in
equation (6) can be solved from a system of M simultaneous
equations as

2 ol 0o} of)”" [0}
H: ot o of| |0} @
a3 o} 03 03 o3
which can be written as
[a]=—[F17'[Fy] ®

where [F] contains the measured fields at the neighboring
nodes while [Fo] contains the fields sampled at the zeroth
node. One may wish to more metrons than unknown. In this
case (M>NN), the coefficients are obtained through least
squares.

III. Wavelet Mei Method

The accuracy of the MEI method depends on the ability of
the measuring functions to approximate the field at the
boundary, not on the ability of the metrons to approximate
the source [S]. Therefore, there exists a wide variety of
functions, which can be used as metrons. The choice of
metrons in [1] and [16] was

2knl ,_
cos = ,k=0,1,2

Je= (10)

. 2krl o _
sin =7 Lk=1,2

where L is the perimeter length of the object, and [ is the
length along the perimeter (0<[)L<1). o
In this work, Haar wavelets are used to improve the

computational efficiency of the MEI method. Where Haar
wavelets are. used as metrons, (7) becomes

o D= [GG| I 7)de a1

where are the Haar wavelet coefficients and are the Haar
wavelets as follows:

_ 1if 0< 7'<1,
o y’>={ (12)

0 otherwise

and for,7 > 0, 0 < j < 2" and k=2'+7,

_ _ 2% i 25<27(+1/2)
(7= hi 7'>={ — 27 if 27 G+1/2< Y <G+DAY)
0 other

In fact, the Haar wavelet coefficients in (11) and the
measuring functions in (7) are equal. Since Haar wavelets are
orthogonal, we can use the pyramid scheme to calculate the
Haar coefficients [17]. An important aspect of the pyramid
scheme is that it is a fast algorithm. Thus, calculating the
complete set of the Haar wavelet coefficients with N average
values requires 2(N-1) additions and N multiplications. Given
N=2" samples of a function, which can be thought of as
values of scaled averages

27"k

Si=2"2[" R, 149)

27"k-1)

of f on intervals of length 27", one may get the Haar
coefficients

di= 71'2' (31— 520 . (15)
and averages
k= (b1 + 580 (16)

on the interval of lemgth 27 "*!. By repeating the above
procedure, one may obtain the Haar coefficients and averages

= (hms = 550 an
i = (shm b (18)

for j = 0,1, .., n-l and k=1, 2, ..,2"7". An important -
aspect of the whole decomposition is that it is a fast
algorithm. If we start N samples s}, then we should calculate -

N/2 averages s, and N/2 differences d}; from the averages

si we obtain N/4 averages -s; and N/4 differences df, etc.

Now, we will demonstrate the procedure for obtaining
measuring functions by using the integral wavelet transform.
Here, we use only -eight samples a; a; a3 a4, a5, a5, a7, as

which can be thought of as values of scaled averages in
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intervals of length 1/8 of a function defined on [0, 1]. Then,
the first calculation involved is
_1 ( 1
=75 atay), = \/'2'(03"'04) (19)
33=71=2=(a5+a6), s4=71§(a7+a8)

d1=71§(a1—a2), a’2=%2(a3—a4) (20)
d3=71§(05‘ﬂ6), d4=71§(ﬂ7_as)
In the second stage, discarding d, dy ds, and d,, we consider

sums s, Sp s3, and s, as new samples which are averages on
intervals of length 1/4:

ssl=71§(sl+sz), 852=71§(33+34) 21
dslzvlz"(sl—SZ)v dgzz—\}z-(33_54)

By repeating this procedure, one may compute sum of sums
sss;, and difference of sums dss, as shown in Fig. 3.

Level 0 "fz 9 a4 a, as ag a as"
Level 1 s % 5 slld 4 4 4

Level 2 s8 ss,||ds; ds,

—H
i

Level 3

Fig. 3. The pyramid scheme for calculating the Haar
wavelet coefficients.

The measuring functions q)“, k=1, 2, .., 8, in equation
(11) are obtained by choosing the second block in each low
and the first and second entry on the last row in Fig. 3:

@1=SSSL @szdl
G)Z=dssl_ @6=d2
oi=ds, o0'=d, 22)
@4=d92‘ d78=d4

One may also draw the Haar wavelets which correspond to
the entries in the rectangle. Fig. 4 displays the Haar wavelets

corresponding the Haar wavelet coefficients.

(b)
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Fig. 4. The first Haar wavelets correspond to the
entries in the rectangle.

IV, Numerical Result and Discussion

In this work, the MEI and the Wavelet MEI methods were
applied to solve the scattering problem of two-dimensional
conducting cylinders as shown in Fig. 5 for E-wave and
H-wave incidences ( ¢ ‘=0), and the MoM solutions were
obtained to validate the results of the two methods. For all
figures, N is the number of unknown, M is the number of
metrons, and NL is the number of mesh layers.

Fig. 5. Cylinder and the mesh around it.

In Fig. 6 and Fig. 7, the induced electric currents on the
surface of a circular cylinder obtained by the MEI and the
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Wavelet MEI methods are compared with those computed by
the MoM, respectively. In Fig. 6, sine and cosine functions
in equation (10) are used as metrons.
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Fig. 6. Induced current on thé¢ surface of the circular
cylinder for as calculated by MEI and MoM for
(a) E-wave, (b) H-wave. N =1024, M =8, NL
=10, Metron used: 1, sin, cos

Haar wavelets in equation (12) and (13) are used as
metrons in Fig. 7. For the MoM, the pulse functions are used
as basis in both Fig. 6 and Fig. 7. One may see that there
is an excellent agreement among the three different methods.
Fig. 8 shows the CPU times fequired to obtain solutions with
increasing number of unknowns (N) for the four methods.
Keeping the electric size of object N is increased by reducing
the step size on the object and at the mesh edge. We also
observe excellent agreement over a wide frequency range (o
=0014,012, 14,104, 100 A). As mentioned in Section
I, the integration process of the MEI method is of order
O(Nz) and the dominant part of the calculation. In the MoM,
the integration process to fill the matrix is also O(N3 ), but
since the matrix is full the inversion is O(N3 ) and is the
dominant part of the calculation. For low values of N, the
dominant part is filling the matrix (O(NZ)), but as N increases,
the inversion of the matrix (O(N3)) starts to take over. Since

there is no way to solve a full-matrix equation in less than
O(N’) time, there is very little incentive to speed up the
integration process in the MoM, and this is why very little
effort has been done in this direction. If one accelerate the
integration process of the MEI, the computational efficiency
of this method can be improved. '

(@
25 T T T T
Haar —
2F PN MoM ----- -
J, 1.5 | -
Hl‘
1 - -
05 -
0 1 1 1 1
0 0.2 0.4 % 0.6 08 1
EA
Hi

Fig. 7. Induced current on the surface of the circular
cylinder foras calculated by Wavelet MEI and
MoM for (a) E-wave, (b) H-wave. N =1024, M
=8, NL =10, Metron used: Haar wavelets

Fig. 8, which is in the double logarithmic plot, shows that
the CPU time of the MEI method can be significantly
reduced by using the Haar wavelets. Generally, several

. metrons are required to calculate unknown surface current on

a circular cylinder boundary. Thus, one may obtain Haar
wavelet coefficients with a small number of scaled average
values. In this case, these average values can be computed
by using integration techniques. In this work, the integration
was done by Gaussian quadrature using a ten-term formula.
It is indicated that the Wavelet MEI method with a small
number of scaled average values provides a solution much
more quickly. A SUN Sparc 20 was used to check the CPU
time of each method.
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Fig. 8. Comparison of the CPU times with varying the
number of unknowns. M =8, NL =10.

V. Conclusion

In .this work, the significant saving of the computational
time of the MEI method was achieved by using wavelets as
metrons. The application of the MEI and the Wavelet MEI
methods to a circular cylinder gives excellent results. The
results were verified by the MoM which is very robust.
However, as the perimeter of cylinder becomes large one may
need to increase the number of mesh points to get accurate
solutions. Increasing the number of mesh points requires more
CPU time to obtain solution by the MEI method. In this case,
the Wavelet MEI method makes the work very easy. The
results presented in this work indicates that the Wavelet MEI
method has the potential to provide an accurate solution much
‘more quickly. When the MEI method applies to
three-dimensional problems, the metron would be a function
of two variables, rather than one. In this case, the Wavelet
MEI method with two-dimensional wavelet transform will be
a significant tool.
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