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H.. Controller Design Based on NLCF lModels:
A Unified Approach for Gontinuous and Discrete
Systems

Sang-Soon Youn and Oh-Kyu Kwon

Abstract

In this paper, a unified approach to the H,, controller design is proposed under the §-form for both continuous and discrete
systems. Most of important basic concepts of H., control,. such as inner, co-inner, GCARE and GFARE, are reformulated by
the unified form. The NLCF(Normalized Left Comprime Factor) plant description has been reviewed in the §-form, and some
corresponding results are proposed. And the unified H., controller is designed which is based on the McFarlane and Glover[1].
The state-space parameterization for all suboptimal controllers is given under the NLCF model which may not be strictly proper,
and the central controller is derived by using the solution to Hankel norm approximation problem[2]. The unified controller
is applied to the industrial boiler control problem to exemplify the performance of the controller.

I. Introduction

The H. approach to optimal control problem which was
originally formulated by Zames[3] has received a conside-
rable amount of attention during the last decade, because it
makes it possible to analytically approach to the area of
robust stabilization of plants with unstructured uncertainties.
However, the most approaches have a restriction that the
plant must be reconstructed by a simplified form under some
assumptions in order to be applied to general plants [4].
Moreover, solutions to H., optimization problem are typically
iterative in nature so that the maximum stability margin for
this problem has been obtained from so-called ° y -iteration’
method[5,6], which requires a large computational burden. In
recent paper, Englehart and Smith[7] have shown that an
explicit formula for maximum stability margin can be derived
without iteration in 4-block H,, optimal control problem.

McFarlane and Glover[1,6] have shown that, when the
coprime factorization of plant is normalized, a surprisingly
explicit solution to the robust stabilization problem can be
derived and that the 4-block H,, control problem is reduced
to 1-block problem saving the computational burden. In
addition, they have proposed an open-loop shaping controller

Manuscript teceived February 25, 1997; accepted February 17, 1998.

The author is with the School of Electrical and Computer Engineering, Inha

University

design technique with which the controller is systematically
designed without choosing four frequency weighting functions
independently. In particular, the design method above allows
performance requirements to be specified within the
normalized coprime factorization framework and the trade-
offs between performance and robust stability objectives[8].

However, most of approaches to H, control problems
have been restricted to continuous-time systems. Although
there are some discretization transformations, they have
serious numerical errors. Therefore, in order to apply the
continuous controllers to the practical problems, they have to
be tuned manually by additional experiment because they can
not be directly converted to discrete ones in the digital
computer implementation of the controller.

The ¢-form approach proposed by Middleton and
Goodwin[9] is known to have numerical properties superior
to those of usual shift form. Also, owing ‘to the similar
structure of the & -operator with differential operator, it can
generally use the continuous-time insights in the discrete-time
problem and it directly represents the corresponding

_continuous form as the sampling interval approaches zero.

That is, this approach makes possible to solve the unified
solution to both continuous and discrete-time cases. These
indicate that the ¢ -form approach may offer a powerful tool
to solve the discrete-time control problem for continuous-time
plants, that is, hybrid-time systems.

In this paper, a unified approach to the H, control
problem is proposed to overcome numerical problems which
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occur when the continuous H. controller is discretized by
. the traditional shift operator as in the existing approaches.
Firstly, the GCARE, GFARE, and some basic concepts such
as inner, coinner, all-pass etc., are reformulated to supply
theoretical background using the §-transformation proposed
by Middleton and Goodwin[9]. Secondly, NLCF(Normalized
Left Comprime Factor) model description is reviewed under
the ¢-transformation, and some corresponding results are
proposed in the unified form. Thirdly, the unified H,
controller is designed based on the NLCF model description,
which corresponds to the control concept proposed by
McFarlane and Glover[1,6]. Finally, the unified H,
controller is applied to an industrial boiler system to
exemplify the performance of the controller proposed.

II. Definitions and Preliminary Results

Consider a continuous-time state-space system

2D = Ax() + Bou(d @.1)
¥ = C.x(d + D,u(d

where A, B, C. and D, are nxn, nxm, mxn and
mX m matrices, respectively. System (2.1) can be converted
to the discrete §-form model by §-operator[9] as follows:

dx(k) = Ax(k) + Bu(k) 2.2)

Wk = Cx(k) + Du(k)

where ¢ = 12_1, g denotes the usual forward shift operator

and 4 is the sampling interval. And the system matrices are
given as follows:

A = QA, 2.3)
B = B, 2.4)
C=cC 2.5)
D = D, : 2.6)
2 = L [“expta,crar

Taking the Laplace transformation in (2.1) and & -trans-
formation in (2.2) respectively, the complex variable y of
the ¢ -transformation is related to s, the complex variable of
Laplace transformation, as follows :

172 + Re(r) <0 <—> Re(9)<0 @7
21717 + Re(7) =0 (—> Re9) =0 @8
It should be noted that, while the z-transformation for

shift operator model might produce additional unstable zeros,
but not the §-transformation for (2.2) does[9].

RL,, denotes the space of proper, real rational functions
with no poles on stability boundary contour with bounded
norm denoted i - Il . RH, denotes the subspace of RL,
with no poles outside the open stability boundary contour and
RH,, denotes the space of RL. in RH. with no poles on
the stability boundary contour. And H./L. norm of a TFM,
G(7), is denoted by

NG ) o =sgﬁdm[—%l] 2.9

L

where ’ ¢’ denotes the maximum singular value.

State-space system is denoted

A|B
o
where G(7) = C(yI—A) "'B + D, and the state-space
representation of G(7)* is then

G(r) = (2.10)

-AT A" | A'cT
Glr) = — = 211
()" =\_pgrar | pr—apr a7cT @1

o~

where A = (J+4A)7!, A and (J+4A) must be
invertible.

If G(y) is stable but not necessarily minimal with a
state-space realization in (2.10), then the controllability and
observability gramians, P and Q respectively, are defined as
the solutions to the following unified Lyapunov equations :

AP + PAT + BBT + 4APAT = 0 2.12)

ATQ + QA + CTc + 4A"PA = 2.13)

With the notation in (2.12) and (2.13), the Hankel singular
values of G with degree n are given by

o2 A" (PQ, i=1,n @2.14)

ordered by convention, o, = ¢,= 0, = 0. The Hankel
norm, denoted | - | 4, is defined to be g,.

ITI. Normalized Left Coprime
Factorization in d-domain

All-pass system (or lossless system) and coprime facto-
rization are relevant to many aspects of control theory. In
particular, such systems play important roles in H,, optimi-
zation and model reduction problems. Here, the all-pass
system is defined in the & -domain and the normalized left
(respectively, right) coprime factorizations can be obtained in
terms of the solution to the generalized control (respectively,
filter) algebraic Riccati equation.
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Lemma 3.1 Let G(7) be a stable, mxp transfer function
matrix with minimal state-space. realization

A | B
G(7)=[+
lC | D

AP + PAT + BBT + 4APAT = 3.1
1, if and only if

, let P = PT be such that

then G is co-inner, i.e. GG* =
BDT + PCT + 4APCT = 0 ’ (32

DDT + 4CPCT =1 (3.3)

Proof: Refer to [11].

Lemma 3.2 Let G(7) be a stable, mxp transfer function
matrix with minimal state-space realization

: A|B .
G(r) = [ ],let Q = QT be such that
C|D _
ATQ + QA + CTC + 4A7QA = 0 3.4

then G is inmer, ie. G'G = I, if and only if
"DTC + BTQ + 4BTQA = 0 ‘ 3.5)

DD + 4BTQB = 1 : (3.6)

Préof: Refer to [11]. o

Finally, note that a square transfer function G is called
all-pass if GG* = I ( or equivalently if G'G = I ).

Theorem 3.1 Suppose G(7) = C(yI—-A) ‘B + D with
A asymptotically stable. Then there exists X = X7
satisfying the generalized control algebraic Riccati equation
(GCARE) in ¢ -domain, :

ATX+XA+CTC+ 4ATXA—- LT(S+ 4BTXB)L=0 3.7
L=—(S+ 4B"XB) ~'[ D"C+ BT X(I+ 4A)] - (38)

where R = I + DDT andS = I + D'D.

Proof: The continuous Hamiltonian matrix for GCARE can
be interpreted by the g-operator as follows:

" 4BS™'BT ]
= 01+A(A BS™'DTO)T
(A—BS“DTC) ~BS!'BT

-CTR™'c  —(A-BS7'DTC)T

_[ A+4BSTBT(U+ 4 ANTIT —BS BT +A AT ) 39)
~(I+4 ADHIT —+a AN AT

where A=A-BS™'D'C, C=C'R'C. Then GCARE
(Generalized Control Algebraic Riccati ‘Equation) in ¢
-domain can be expressed using the Hamiltonian matrix

EEEE

Hy as follows:

0=[-X 1.]H,;c[§(]

=(A-BS ' DTO "X+ X(A-BS™'DTO)
+4(A—-BS™'DTO)TX(A-BS™'DTQ)

—[I+4(A-BS™'DTC)"IXB(S+4B"XB)'B"X

[I+4(A- BS™'D"O)1+C"(I- DS D)C (3.10)

Using the matrix inversion lemma in (3.10), we have

0= ATX+XA+4ATXA+CTC

— C"DS™ [ I- AB"XB(S+4B"XB) "1B"X

x (I+ 4A) — (I+ 4A)XBLI— A(S+ 4B"XB) 'BTXB]S™'D"C
— CTDlI- 4B™XB~ A#*B"XB(S+ 4B"XB)'B"XB]S™'D’C
—(I+ AATYXB(S+4BTXB) " \BTX(I+ 4A) (3.11)

Applyixig the matrix inversion lemma ggain to (3.11), we can
complete GCARE as
0= ATX+ XA+ 4ATXA+C'C
—[CTD+(I+ 4ANXBNS+4B™XB) ™!
x [BTX(1+ 4A) +D7C)

Let the matrix formed of the generalized eigenvectors
corresponding to the eigenvalues of Hj inside or on the
stability boundary Then

Xy X
H = 1
SC[ X 21 ] X 21 ]
where A is a dlagonal matrix of eigenvalues, Jordan form
matrix. From (3.9), we have

I Xy AXy! '
- H ] =[Xudiu 3.12
6C[ XZIXIII ] [XQIAXI_II ] ( )

and the first row can be written by (3.9) as follows:
X11/1X11
= A-BS {I- A(I+AXBS 137) 1BTXBS™ 1]DTc
— ABS™ NI+ 4xXBS™'BT)"'BTxA
A—B(S+ 4BTXB) Y DTC+ BTX(I+ 4A)

= A+BL 3.13)

Thus, we see that the matrix on the left side of (3.13) is
the " A” matrix of the closed-loop system. Hence A
represents the Jordan form of this matrix and X, represents
Lo

the corresponding matrix of clgenvectors
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Theorem 3.2 Suppose G(y) with A asymptotically stable.

Then there exists Z = Z7 satisfying the generalized filter
algebraic Riccati equation (GFARE) in ¢ -domain

AZ+ZAT+BBT+ 4AZAT-H(R+ 4CZCDHHT=0 (3.19)

H = —[(I+44)ZCT+BD" (R+ 4 CZCT) ! (3.15)

Proof: From the continuous Hamiltonian matrix for GFARE,
it can be also interpreted by §-operator.

Hoe [ 1 ACTR™'C ]‘1
F 0 I+4A-BR'DTOT
[ (A-BR'DTC)T -CcTric ]
—-BS'BT —(A—-BR™IDTC)

_[ AT+ ACTRTICI+4Z) 1B —CTR_IO(”"A)_I] 3.16)
—(I+42A)'B ~(H+ A A )

where A=A—-BD"R™!C, B=BS'BT and it is multiplied
as

—r_ I ’
0=[-2 z]HaF[Z] 317
=B(I-D'R™'D)BT+ Z(A-BDTR'O)T+(A- BD'R!0)Z
+4(A~BD'R™'QZ(A—BD"R'C)T -1+ LA~ BD"R™'0)]
x ZCT(R+4czChy™'cZl I+ 4(A— BDTRTIC)T ] (3.18)

Using the matrix inversion lemma in (3.18), we have

0=AZ+ZAT+ 4AZAT+ BBT™— BDTR™ [ I— 4CZCT(R+ 4CZC) 1]
X CZ(I+A4AT)—(I+ 4A)ZCT I- (R+ 4czcT)~*czcTiR™ DB

—BDTI-R™'CZCT— AAR7'CZCT(R+ 4czcD ~'czcTIR'pBT (3.19)

Now, applying the matrix inversion Lemma again in (3.19),
we can complete GFARE as

0=AZ+ZAT+4AZAT+ BB [ (I+ 4A)ZC™+ BD"]
X (R+4CZCD U DBT+ CZ(I+4AD] (3.20)

The strong solution of the GFARE in ¢§-domain is obtained

by choosing §ll] ERZ"X“ to span the nth order stable
21,

invariant subspace of H,.. The strong solution for (3.16) is
then _
XpAXnt= A—BDTR Y I-4CZCT(R+4CzCT)']C
+(I+4A)ZCT(R+aczch)~Ic
=A-[(I+4A)ZCT+ BDT( R+ 4cZCT)™IC

=A+HC (3.21)
Now, it is easy to know that the both of GCARE and
GFARE in ¢ -domain also have dual property. N

Theorem 3.3 Let (A,B,C,D) be a minimal state-space
realization with associated transfer function

G(}) = C(yI— A)"'B+ D. If there is a normalized left
coprime factorization G(7) = M™'N such that

A+HC|B+HD H
(N m] = [ ] (3.22)
4 YC | YD Y
N, M € RH, and NN+ M =1, then
(OH=—[ A 'zcT+BDT (YY) ! (3.23)

(2) z= ZT is unique positive definite and symmetric(3.24)
where Y'Y = (R+4CzCT) ™

Proof: Let G(7)=[N M ]. Then state-space realization of
G(7r) is
G(r)=ClyI-A'B+D

where A = A+HC, B= [B+HD H]l, C = YC,
D=1[YD Y].

Condition (1) : we can define the co-inner,

C(rYG(r) = 1I,if G(y) is stable and
BDT + ZCT + 4AzCT = 0.

It can be written again as

BDT = —(zCT + 4AzCT)
DY

[B+HD H] =—[2CTY +MA+HOZCTY]

Y
H(I+DDT+ 4CZCT =—[ (I+ 4A)ZCT+ BD"]

H= —(A'zC"™+BD" XY Y) ! (3.25)
Condition (2) : G(7) also satisfies the Lyapunov equation
(2.12) as

AZ + ZAT + BDT + 4AZAT = 0 (3.26)

DTy

(A+HC)Z+Z(A+HC)T+[B+HD H]

Y
+A4(A+HCYZ(A+ HC)T

= AZ+ZAT+ BB+ 4 AZAT— H(R+ aczChHHT
= AZ+ZAT+ HHT+ HDDTH+ AAZAT+ 4HCZCTH?
—(ZCT+ BDT+ 4AZCTYHT— H(DBT+ ACZAT+HCZ) = 0 (3.27)

This can arrive finally at the Generalized Filter Algebraic
Riccati Equation (GFARE) in §-domain for Z. The only
remaining point is to establish that A is indeed a stable
matrix, i.e., that A+ HC is Hurwitz, which can be easily
shown by (3.21). Hence Z is the solution of GFARE. [ ][ ]
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IV. H, Suboptimization Problem W]lf[]hl
- NLCF Model

The following theorem given by McFarlane and
Glover[1,6] shows the optimization of 4-block H, problem

solving 1-block Hankel norm approxﬁnation problem in §
-domain while the NLCF model is normalized.

Theorem 4.1 For ¢ < € max NLCF model, followmgs are

equivalent[1,6].
(1) (G, K) is internally stable and satisfies

I[%]a-c0 e )< e @1
(2) All optimal con&ollem are given by |
_ .
TR+ 910,

where, ¢ = ¢ ), K = Uy} for U, V € RH..

(1-e B @2

On the theorem 3.3 and (2. 12), the state-space model of
[-N M1

—(A+HOT A,

- N | AgTCTYT
(B+HD)T AT |-DTY"-4(B+HD)T A, TCTYT
n ~HT A7 Y- 48T A,7CTYT
@3
where, Ay7 = [I+4(A+HO)T]™

We first apply the result of the theorem 4.1 to obtain éll
controllers using (4.3). Then all @y satisfying the result of

Hankel norm approximation problem[2] are given as follows:

Qx= FU(S(Y) #)s 4.4

whete ¢ € RH., ™, I $1l o<1,|  |=

, Sa 1S
with state-space form ol e
Sa | Sz S 1 Su
S.-—AL Ay’
$=[RE'( AyCy™ Do+ QuBIDH:  RY' Ay ChDuD.]

s =[ —CvPy— DyBL A, T
c T -~ T
BU AU

Sy= (D — U)DL_JZII DyyDs
— D 0

—N*
and Py, Qy are; Gramians for
. M‘
Ry=PyQuy— o’ and D. is a arbitrary matrix such that
[02Dys(Dy—Dy)Dyy  D.]is a unitary matrix.

The next theorem gives a>simpliﬁ_ed solution to Hankel norm
approximation problem in. this case.

Theorem 4.2 For I N M. < 8 < 1, the parameterization
of all controllers satisfying theorem 4.1 is given by

K= (Suy+ Spu® (Suv+ Spv® ™! @.5)
Suv S‘120 . 2 th
where Su= y BS;y= sB=¢ " (1—¢e?).
Suv 12V

and q)eRH Rl <1

Proof: Let a=(1—¢ ) , then from (4:4) [ ]satlsfymg

theorem 4.1 and
[ g] =(Sp— @ 2S¢+ Sid)[ S — (@ %Sy + D'y + Sws] ~' (4.6)
where ¢= [ 21 } ERHZ™, and ¢, €RHZ™", $,cRHI*™ .

2

Let U=[gl]’ then K=UV '=UWU,W'=0U,U;!
9 )

since V is a unit in RH.. Now, all controller K can be
constructed with only U, and U can be represented as

U= (Su+ SuB)(I—-"a’¢)
where 8 = ¢,(I— a %¢,) 'ERHI*?-
and 1 81l o _I(I— e? _l[6] And similarly as above,
(I-a 2:;51) is a unit in RH,. All controller can be given by
a coprime factorization of

U=[Suu+ Suufp]
Suvt Spvo

Therefore the resulting controller is parameterized by

OO

Now the state-space parametrization for all suboptimal
controllers, K= UV !, is given in the next theorem in
combination with the state-space realization of

[-F m 1"

K=(Suvt+ Spu®)(Suv+ Spv® ™
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Theorem 4.3 All 88— H.. controllers for the NLCF robust
stabilization problem satisfying theorem 4.2 are given by

K=Fy(L, ®) @.7
La E Lb
where the state-space form of L is L= |------ SRRt
Lc E Ld
L,=A+HC 4.8)
Ly=RT [(B+ HD)Dyy, ~ HD 15
4+ QuALTCTYT DR | BRY
x[ (B+HD)Dy—HD., ] “.9)
—(B+HD)T Ay [Py+d4 A °CTYTYC1-DTYTYC
L.= A 4.10)
HT A N Py+4CTYTYC)- YTYC
[Dyn+DTYT—4(B+HD)T A, 7CTYIDy, D4
L= @.11)
(Dup— YT+ 4HT A, TCTYNDyk AD,
and » »
> Dy —4e¢*B+HD)T Ay "RFCTYT U+ AV QR CTYT ™
" Dy da’H" A5 "R CTY I+ 4YCQuR,'CTY D ™!

Dazbm=a2[l+d[3jg%’ ]R51PU[B+HD -H 11!
=[Dx
DuzD-- [DJ-2]
DoDim= a« {1+ 4YCQuRy'CTYT) ™!

1
a=(1—¢e?? and QERHI*, 110N ,<I.
and P, and @, are the solutions to P,, @, -Lyapunov

equations of [~ N 7 1%, respectively.

Proof: From the (4.4) and the theorem 4.2, we have figure
of

K=(Suu+ szu¢)(sm1v+ smw(ﬁ)_l 4.12)
therefore L(y)= [ Sn 312 ] =

—-AL A, | R AyrCy™Doy+ QuB)Ds  BRY AyCID D
—CyPy—DyBf Ay ™ (Dyy~ DD BDy,Dx

A particular controller, central controller , in the theorem
4.3 is given by Ky,= L, L' corresponding to @=(, because
it is written as a unity feedback system[l1]. Notice, at the
moment when the sampling time approaches zero, the
controller K is the same with continuous-time ones
developed by McFarlane and Glover[1]). Therefore, it is
possible to design the unified H, controller of continuous
and discrete H, controllers by solving H,. optimization

problem in & -domain.

V. Application to Industrial Boiler
Control

To exemplify the performance of the proposed controller,
we will design a continuous and a discrete H. suboptimal
controller for a gas- or oil-fired boiler using the proposed
algorithm and the well-known loop-shaping design technique.
The design example deals with the heating-cogeneration
boiler model which exhibits nonlinearities, instability, time
delays, non-minimum phase behaviour, and coloured noise
disturbances with sensor noise in the frequency range of the
significant plant dynamics[10]. A properly functioning boiler
must satisfy the following requirements; i) a desired steam
pressure must be maintained at the outlet of the drum; ii) the
water in the drum must be maintained at the desired level to
prevent overheating of drum components or flooding of steam
lines; iii) the mixture of fuel and air in the combustion
chamber must meet standards for safety, efficiency, and
protection of the environment, which is usually accomplished
by maintaining a desired percentage of oxygen in the stack in
excess of that required for a perfect, or stoichiometric
combustion, usually referred to as excess oxygen. The control
variables and measurements are as below:

w1, uy, uz - fuel, air flow, and feedwater flow rate,
Y1, ¥, y3 - steam pressure(p.s.i), excess oxygen(%), and
water level(in).

The linear and nonlinear model is given in [10] which is
controllable and observable. We firstly find discrete-time
system matrices in §-domain with sampling time 0.1(sec),
which is selected with consideration of the closed-loop
bandwidth, as follows:

—5.507e—3 0 0 —1.584e—1
A= 0 —2.04le—1 0 0

—1.216e—2 0 0 —5.660e—1

0 0 0 —3.992¢—2

2.797e—1 0 —1.348e—
B=| —9.219¢+0 7.580 -0

—1.020e-3 0 7.317e—1

2.993¢e—~2 0 0

—~1.42le+1 0 0 0
C=[ 0 1.000e+1 0 0 J

3.221e—1 0 1.434e—1 1.116e+1

0 0 0
D=[ 0 0 0 ]
1.272e+0 0 —2.080e—1
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Note that the discrete-time model doesn’t have any additional
nonminimum phase, since §-transformation always maintains
the minimum characteristics even in discretization procedure
like this case.

The loop shaping weighting function we decided on is
10s* +10s+ 0.5
s(100s+5.5)
in which the gain, and pole and zeros locations were arrived
at the required loop shape at high-and low-frequency. Fig. 1
shows the unshaped open loop singular values plot. The

W = 13)(3

corresponding shaped plant and weighting function singular

value plots are given in Fig. 2 and Fig. 3. From Fig. 1 to Fig.
8 we use solid and dashed curves to distinguish continuous
and discrete time results.

Then. the allowable maximum stability margin for shaped
plant is e ., =0.370. In presented design, the stabilizing
H, controller, obtained in the design procedure of the
previous Section, is chosen to be a suboptimal controller. In
general, the suboptimal stability margin, ¢, is chosen such
that 0.95¢ nor € € < € 4, and it clearly reflects the
maximum achievable stability ‘margin for the particular
problem{6]. In this case ¢ is selected as 0.98¢ ,,..-

The compensated open loop is given in Fig. 4. Fig. 5
shows the sensitivity function of ¢ .. [/— GK)!]. In Fig. 6,
the plot of o ,,.[(J—-GK)] 'G] highlights the effect of
including integral action in the shaping function, giving zero
steady-state transmission of input disturbance signal. In Fig.
7 the bound of additive uncertainty, 1/ {0 mel (K(I

—GK)™'1}, can be allowed for in excess the magnitude of
plant at high frequency. Fig. 8 shows 1/ {¢ [ GK(I—

GK)™']} and indicates that at low frequency, admissible
bound of output multiplicative uncertainties with 100% of
plant magnitide can be tolerated and at high frequency, the
uncertainty well in excess of the plant magnitude can be
tolerated.

It is noted that the plots of the closed-loop TFMs in &
-domain coincide with ones of s-domain within the ranges of
smaller frequencies than sampling frequency. This indicate
that the design of discrete-time controllers with fast sampling
frequency has good numerical properties. Fig. 9 - Fig. 16
shows the time-responses with respect to step input to both
nominal and nonlinear plant. In Fig. 9 - Fig. 10, the
time-responses with linear continuous and discrete H,
controller are shown. Fig. 11 - Fig 16 shows the nonlinear
behaviors with continuous and discrete H,, controller. All of
performances specified, that of maximum overshoot and
steady-state error, are satisfactory. Also it is true that the
responses with discrete-time H.,, controller are very close to

that of continuous-time H,, controller.
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(dB)
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Fig. 3. Shaped plant
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Fig. 4. Compensated open loop
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VI. Conclusions

In this paper, most of important concepts of H, control

theory have been rebuilt in ¢ -domain. Particularly, we have
derived new generalized control/filter Riccati equations using
é operator to provide theoretical background. The
NLCF(Normalized Left Coprime Factorization) description
with maximum stability margin has been achieved as a
unified model to approach continuous and discrete ones and
demonstrated a connection between robust stabilization using
H,, optimization and Hankel norm approximation problem in
s-domain. Particularly, the unified H. control method of

continuous and discrete ones is developed by solving &
-domain problem. We can now start from & -model and
analysis continuous and discrete H,, controller by adjusting
sampling time. It also minimize the errors through
discretization.
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