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Adaptive Data Association for Mulfi-Target
Tracking using Relaxation

Yang-Weon Lee and Hong Jeong

Abstract

This paper introduces an adaptive algorithm determining the measurement-track association problem in muiti-target tracking
(MTT). We model the targét and measurement relationships with mean field theory and then define a MAP estimate for the
optimal association. Based on this model, we introduce an energy function defined over the measurement space, that incorporates
the natural constraints for target tracking. To find the minimizer of the energy function, we derived a new adaptive algorithm
by introducing the Lagrange multipliers and local dual theory. Through the experiments, we show that this algorithm is stable
and works well in general environments. Also the advantages of the new algorithm over other algorithms are discussed.

I. Introduction

The primary purpose of a multi-target tracking(MTT)
system is to provide an accurate estimate of the target
position and velocity from the measurement data in a field of
view. Naturally, the performance of this system is inherently
limited by the measurement inaccuracy and source uncertainty
which arises from the presence of missed detection, false
alarm, emergence of new targets into the surveillance region
and disappearance of old targets from the surveillance region.
Therefore, it is difficult to determine precisely which target
corresponds to each of the closely spaced measurements.
Although trajectory estimation problems have been well
studied in the past, much of this previous work assumes that
the particular target corresponding to each observation is
known. Recently, with the proliferation of surveillance
systems and their increased sophistication, the tools for
designing algorithms for data association have been
announced.

Generally, there are three approaches in data association for
MTT : non-Bayesian approach based on likelihood
function[11], Bayesian approach[6,10], and neural network
approach[15,19]. The major difference of the first two
approaches is how to treat the false alarms. The non-Bayesian
approach calculates all the likelihood functions of all the
possible tracks with given measurements and selects the track
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which gives the maximum value of the likelihood function.
Meanwhile, the tracking filter using Bayesian approach
predicts the location of interest using a posteriori probability.
The two approaches are inadequate for real time
applications because the computational complexity is
overwhelming even for relatively large targets and
measurements and yet a computationally efficient substitute
based on a careful understanding of its properties is lacking.
As an alternative approach, Sengupta and Iltis [15]
suggested a Hopfield neural probabilities data association
(HNPDA) network to approximately compute a posteriori

probability, ,8]' for the joint probabilities data association

filterQPDAF)[17] as a constrained minimization problem.
However, the neural network developed in[15] has been
shown to have improper energy functions. Since the value of

B’s in the original JPDAF are not consistent with X ; of

[15], these dual assumptions of no two returns from the same
target and no single return from two targets should be used
only in the generation of the feasible data association
hypotheses, as pointed out in [5]. This resulted from
misinterpretations of the properties of the JPDAF which the

network was supposed to emulate.

Furthermore, heuristic choices of the constant coefficients
in the energy function in[15] didn’t guarantee the optimal
data association. In this paper, we derive the new scheme for
data association which reflects the natural constraints of the
MTT problem and convert the derived model into the
minimization problem of energy function by MAP estimator
[18]. The coefficients of energy function is calculated by
Lagrange multiplier [2] and local dual theory [1].
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This paper is organized as follows. § II gives a detailed
description of the MTT problem and explains that data
association problem can be formulated as a constrained
optimization problem. In§ Ill, as an optimal method for
solving this problem, we propose the use of differential of the
Lagrange multiplier. § IV, some simulation results of the
proposed algorithm are given.

I1. Problem Formulation and Energy:
Function '

This section derives an energy function whose minimizer is
a MAP estimator for optimal data association. At first the
data association is studied thoroughly in terms of natural
constraints. These constraints are then interpreted as an
energy function.

1. Representing Measurement-Target Relationship

wik) y(k)
Acquisition

L z(k)
Association

x(k) : bl

Prediction
2(k-1)

Fig. 1. An overall scheme for target tracking.

Figl. shows the overall scheme. This system consists of
three blocks: acquisition, association, and prediction. The
purpose of the acquisition is to determine the initial starting
position of the tracking. After this stage, the association and
prediction interactively determine the tracks. Our primary
concern is the association part that must determine the actual
measurement and target pair, given the measurements and the
predicted gate center.

Let mand » be the number of measurements and targets
respectively, in a surveillance region. Then, the relationships
between the targets and measurements are efficiently
represented by the validation matrix Q [17]:

2 = {wjljiell,ml, te(1,n)} 0]
where the first column denotes clutter and always
wpy=1Ge[1,m]). For the other columns,
wy=1G(e[1,m],te[l,n]), if the validation gate of
target fcontains the measurement ; and 'cuj, = 0,
otherwise. Based on the validation matrix, we must find
hypothesis matrix [17] R(={ w,lje[l,m],te(l,n]})

that must obey the data association hypothesis(or feasible
events [17]):

It

= . @
1for Ge[1,m]),

>

[ 30, =1for (t<1,n]),

@ jt

<

Here, ?ujt = 1 only if the measurement ; is associated
with clutter #= 0 or target (¢ =+ 0). Generating hypothesis
matrices leads to a combinatorial problem, where the number
of data association hypothesis increases exponentially with
the number of targets and measurements.

For example, let’s consider a case in Fig. 2,

Fig. 2. An example with two targets and three measurements

where there are only two targets. Then, as can be seen in this
figure, there are two validation gates whose centers are
denoted by the filled disks. This radar scan contains three
measurements, denoted by the filled squares, and one of them
falls inside the intersection of the two validation gates. By
definition, this situation can be represented by the validation
matrix :

1160
=111 1]
101
Applying the restrictions given (2) leads eight hypothesis
matrices:
010 010 100
©1=[001],@2= 100, & = 010],
100 001 001

It is easy that the computational cost of data association
increases exponentially with » and m. In fact, the size of
search space is O(27"). Naturally, the efficient generation
and selection of hypothesis matrices for any number of
targets and measurements are the great interest in the
implementation of MTT.

2. Constraining Target Trajectories

Let’s consider a particular situation of radar as in Fig. 3.

Gate of targer

Fig. 3. Target trajectory and the measurements

In this figure, the position of the gate center of target t at
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time k is represented by x.(k). Also, y, means the

coordinate of the measurement jat time k. Among the
measurements included in this gate, at most one must be
chosen as an actual target site. Note that the gate center is
simply an estimate of this actual target position obtained by
a prediction filter[16].

Since the target must change its direction smoothly, a
possible candidate must be positioned on the site which is
close to the trajectory as possible. As a measure of this
distance, one can define the minimum distance between

x; = (x4,y:) and the measurement y, = (x;,y;) as

(x39— yix0)°
lixe—w;li2 = : 5 €))
£ (x5 +57)
where x, and 1y, are the position differences between

x:(k) and x,(k—1) in x and y axis.

Fig. 4 shows the distribution of the distance measure
depending on the target direction within the target validation
gate.

Fig. 4. Profile of the distance measure in (3)

3. MAP Estimates for Data Association

The ultimate goal of this problem is to find the hypothesis
matrix  Q(={ wylje(l,m],te[1,#1}), given the
observation Y = {Y,| (< [1,m]}, which must satisfy (2).

Let’s consider that  is a parameter space and (2, ¥, X)

is an observation space. Then, a posteriori can be derived by
the Bayes rule: '

_ PR y.x|DP(Q)
P(R1L v,x) RS @

- P212), P(v.xI|DP(D)
P(2,y.x)

Here, we assumed that P(Q, y,x|R) = PRI Q)
P(y.,x| ), since the two variables £ and (X, Y) are
separately observed. This assumption makes the problem
more tractable as we shall see later.

This relationship is illustrated in Fig. 5.

Fig. 5. The parameter space and the observation space
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Given the parameter 2,0 and (X, Y) are observed. If the
conditional probabilities describing the relationships between
the parameter space and the observation spaces are available,
one can obtain the MAP estimator:

2 = argmaxP(RIQ,y,x) G}
2

4. Representing Constraints by Energy Function

Here we assume that clutter distribution around the targets
are Gaussian since it make harder to keep the tracks
comparing to the uniform distribution. To determine the
solution of 5 efficiently, the mean field theory [12] from
statistical mechanics is used. The mean field theory is based
on the fact that the mean value is the minimum variance
Bayes estimator and becomes the MAP estimator when the
distribution is Gaussian. As the states are the Markov process,
so we assume that the conditional probabilities are all Gibbs
distributions:

P(R12, y,x) = Lexp{—E(R|2,v,x,)}
P(y,x|®) = Jexp{-E(y,xIQ)},

P(212) = +exp{-E(21D)}, ©)
P(D) = Jexp{-E(@)},

P(2,y,x) = Zexp{-E(2y, %)},

where Z (s <=11,2,3,4]) called a partition function:

z = [, exo{-E(2))dR )

Here, E denotes the energy function. Substituting (6) into
(4) yields

E(R12,y,x) =E(y, x| Q)+ E(Q|2)-E(Q,y,x) 8

o argmin E( 210, v, %),

e ®
argmin [ E(y, x| 2 +E(QI2) + E(D)].
2

The energy functions are realizations of the constraints
both for the target trajectories and measurement-target
relationships. For instance, the first term in (9) represents the
distance between measurement and target and must be
minimized using the constraints in (3). The second term
intend to suppress the measurements which are uncorrelated
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with the validated measurements. The third term denotes
constraints of the validation matrix and it can be designed to
represent the two restrictions as shown in (2). The energy
equations of each terms are defined respectively:

_ (x39—yix)? -
E(y,x|Q) = )2 1,2‘1__Jx—§+_ylz_t— Wt
E@QIR) = 2 2 (aime) (10)
E(@) = Zl( gl Z)ﬂ‘l)'*‘ 121( go Z)j;_].).

Putting (10) into (9), one gets

(9 —yx)? ~ g
2y 2 (x,+y, ,, + 5 ﬁl ﬂl( w,-,—‘w,y)

+ Z} ( 121 wy—1) + /21 ( Zo w;—1),

In (11), the first term favors associations which locates
near the velocity line by weighted validation matrix. The
second term tends to discourage unrealistic association by
comparing the generated matched events with the validation
matrix. The third and fourth terms represent the constraints as
explained in (2).

o= A
argmin an

II1. Relaxation Scheme

The optimal solution for (11) is hard to find by any
deterministic method. So, we convert the present constrained
optimization problem to an unconstrained problem by
introducing the Lagrange multipliers and local dual
theory[1,2]. In this case, the problem is to find " such that

~%

@ = argmin ~L( @,A,¢) where

I x‘) ot £ B B0 @
+ ZlAt( Z} wy—1)+ 12:15,-( Zﬂ ;= 1),

a is coefficient of matching term and A, and ¢; are the

L(w,A,8) =

Lagrange multiplier. Here we modify (12) to include the
effect of the first column which represents the clutter or
newly appearing target. In this paper, we also assume that
m> n, since most of the multitarget problem is caused by
many confusing measurements more than number of original
targets, and that the summation of probability either in a row
or column is one. Therefore, the Lagrangian $ L( w,A€)
can be changed by

L(oAo = & & —(—XJ%/‘"—) B,(1-3) + £ 3 2 b
+ gua,[ ,2:'1 Z),-,—l—dm,,a,]+ gs,(gua,.,—n, 13)
where d,, = m—n—1.

We now look for a dynamical system of ordinary
differential equations. The state of this system is defined by

@ = { @;} and the energy equation Lis continuously

differentiable with respect to * @;,(j = 1,--and t=0,-, %)

and.

Since we are dealing with a continuous state problem, it is
logical to use the Lagrange multipliers in the differential
approach:

Lo — —y(p)dlede)
®
_‘ﬁi = dL( /(A\),/l,E) (14)
dt dA;
de; _ dL(w.Ae)
dt de,

where 7( @) is a modulation function that ensures that the
trajectories of (14) are in a state space contained in Euclidean
mn-space. Performing gradient ascent on A and & have
been shown [20] to be very effective in the resolution of
constrained optimization problems. :

To find a minimum of this equation by iterative
calculations, we can use the gradient descent method :

5 = —n(av L B Ae)al
/1"+1 = A" &+ V}L(Z),A’E)At, . (15)
" = "+ v . L(w,A et

where 0°,4°, and ¢lare initial states, ¢ is the unit

step size for each iteration, and v -~ , v, v, are gradients.
The trajectory of this dynamical equation is chosen in such
a way that the energy L(w,2,¢) decreases steadily along the
path. Hence, L(w,d,g) is a Lyapunov function for this
dynamical equation. Note that this algorithm converges to a
minimum point nearest to the initial state. In general, the
gradient search method has the property of converging to one
of the local minima depending the initial states.

We assume that the energy is analytic and also that the
energy is bounded below, i.e., L=>0. A complete form of
the relaxation equations are given by

— (xyi—vix )2 —~
n — n n
w/,-,?l = wh— At[—-’——’—(x%+y%)t A-68)+e( @y—wy)+AT+
At = A+ At[ ﬁla/)?t-l_dmnal]’ (16)
=

ert! el + At[goa/);'}—l].

This equation can be computed by an array processor. A .
processing element in this array stores and updates the states
by using information coming form nearby processors, together
with their previous states. To terminate the iteration, we can
define in advance either the maximum number of iterations or
a lower bound of the change of @, and A in successive
steps.
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IV. Experimental Results

In this section, we present some results of the experiments
comparing the performance of the proposed MAP estimate
adaptive data association(MAPADA) with that of the
Hopfield Neural PDA(HNPDA) of Sengupta and Iltis [15].
Though the MAPADA has a good structure for a parallel
hardware, currently the algorithm is simulated by a serial
computer. The performance of the MAPADA is tested in two
separate cases in the simulation. In the first case, we consider
two crossing and parallel targets for testing the track
maintenance and accuracy in view of clutter density. In the
second case, all the targets as listed in Table 1 are used for
testing the multi-target tracking performance.

The dynamic models for the targets have been digitized
using sampling period T normalized to 1 s and the state
vectors have been represented in 2-dimensional Cartesian
coordinates. Furthermore, only position measurements have
been assumed to be available. The surveillance region used in
the simulation is a 20 ki by 20 km square and the initial
positions and velocities of 10 targets in 2-dimensional plane
are given in Table 1. Since every targets except target 8 and
9 are non maneuvering, the generic target dynamic model has
the following form: '

(k+1)=Fx(B)+ Gu(k), an

z2(k) = Hx(k) + v(k), (18)
where

(k) = (x(R(R)¥(R) (B),

wk)=Cw, (k) wy(R),

Eu(h}=0,

Euw(hw (D= Q8k—j),
TO

0
00
1 17
01

O DO

and
Eu(R}=0  EuBv(D}=R&k—j).

The correct returns from the targets are generated by
adding noise to the computed true position of the target. The
standard deviation of the measurement noise has been
selected as V R,= 0.15 /Jm for both the X and ¥
components. The correct return would pass a detector with
probability of detection P,=0(.7. The clutter s generated to
get normal distribution around the targets.

The total umber of clutter returns observed in the region is
a Poisson random umber. The density of clutter, C is

selected from 0.2 fo 0.8/ km’. For filter initiation, clutter
was introduced after the time k=5, For the performance
comparing, we have done the Monte Carlo simulation of
N=40 runs. The crossing and paraliel targets whose initial
parameters are taken from target 1,2,3,and 4, respectively in
Table 1 are tested.

In Fig. 6 and 8 sample of track estimation errors between
HNPDA and MAPADA are shown. and the rms error in
position and velocity in clutter density, C=(.2 , are given
in Fig. 7 and 9. The rms estimation errors and track
maintenance capability from the filtering based on the
crossing and parallel targets are listed in Table 3. We note
that an obvious trend in the results is making harder to
maintain tracks by increasing the clutter density. We note
also that, although we have simulated just two scenarios, the
performance of the MAPADA is quite steady comparing with
that of the HNPDA in view of both tracking accuracy and
maintenance.

Table 1. Initial Positions and Velocities of 10 targets.

Target Position ( &m) Velocity (km/s)
i X y X N
1 -4.0 1.0 0.2 -0.05
2 -4.0 1.0 0.2 0.05
3 -6.0 -5.0 0.0 0.3
4 -55 -5.0 0.0 0.3
5 8.0 -7.0 -4.0 0.0
6 -8.0 ~8.0 4.0 0.0
7 -5.0 9.0 0.25 0.0
8 -5.0 89 0.25 0.0
9 05 -3.0 0.1 0.2
10 9.0 -9.0 0.01 0.2

Table 2. Maneuver Parameter of target 8 and 9,

Target | Maneuvering type |Acceleration| Tum period | Turn angle
i m/s) (sec) (deg)

8 Dog-leg 20 10 30
9 Constant Acceleration 10 1-35 0

Table 3. The track performance based on the crossing and
parallel targets.

Clutter Position error v Velocity error mai’:;i:rcl{a(nce
density (fem) (km/s) (%)
Vi) HNPDA | MAPADA | HNPDA |MAPADA| HNPDA | MAPADA
0.2 0.47 0.13 0.46 0.06 84 84
04 0.62 0.16 0.69 0.04 52 76
0.6 0.79 0.17 1.17 0.05 48 74
0.8 117 0.29 145 0.02 36 76
Average | 70.76 0.19 0.94 0.04 55 30
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Fig. 6. Tracking results for the crossing targets
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Fig. 7. RMS errors in position velocity for crossing targets.

In the second test as shown in Fig. 8., target’s model
which are maneuvering is simulated by the Singer model
developed in [9]. Table 4 summarizes the rms position and
velocity errors for each targets. ‘The performance of the
MAPADA is superior to that of HNPDA. The rms error of
HNPDA for the target 8 has not been included since it loses
track during the simulation.

Table 4. RMS Errors in the case of then targets

Target Position error Velocity error |Track maintenance
) (km) (kn/s) (%)
' |'1PDA [MAPADA| HNPDA | MAPADA | HNPDA | MAPADA
1 064 | 042 | 069 0.18 % 100
2 064 | 042 | 042 | 017 95 100°
3 078 | 042 | 022 0.18 100 | 100
4 060 | 043 | 015 0.18 93 100
5 059 | 045 | 067 0.18 & 100
6 057 | 045 020 | 018 100 100
7 057 | 042 0.31 0.49 90 100
8 - 295 - 118 0 53
9 062 | 044 | 027 | 021 80 98
10 | 059 | 045 | 021 0.18 100 98
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Fig. 8. Tracking results for the parallel targets.

V. C@néllusﬁolm

The purpose of this paper was to explore adaptive data
association method as a tool for applying the multi-target
tracking. It was shown that it always yields consistent data
association, in contrast to the Hopfield Neural PDA, and that
these associated data measurements are very effective for
multi-target  filter. Although the MAPADA find the
convergence recursively, the MAPADA is a general method
about the solving the data association problems in multi-target
tracking. A feature of our algorithm is that it requires only
O(mu) storage, where sm is the number of candidate
measurement associations and % is the number of trajectories,
compared to some ‘branch and bound techniques, where the
memory Tequirements grow exponentially with the number of
targets. The experimental results show that the MAPADA is
superior to the HNPDA in terms of both rms errors and track
maintenance rate. This algorithm has several applications and
can be effectively used in radar target tracking system.
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