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Implementation of Chaotic State Machine using
Deterministic Chaos Function

!

Kwang-Hyeon Park, Jong-Sun Hwang, and Chong-Eun Chung

Abstract

For ‘practical application of the concept of chaos, we propose a chaotic state machine as a sequential system. Chaotic state
machine which is suggested and implemented in this paper has chaotic motions relying on the dynamics only through the
deterministic chaos function. Also, we present and verify that the propertles of chaotic state machine is equal to the

characteristics of chaos.

1. Introduction

In recent years nonlinear systems often arise in engineering
applications. Some nonlinear dynamic systems generate
seemingly random, but actually deterministic, processes. Such
a process is called deterministic chaos. As is well known, the
dynamics of chaos has made very considerable progress in
the understanding of nonlinear phenomena. The concept of
chaotic behavior now pervades virtually all the sciences and
technologies.

In order to apply the concept of chaotic motion to the
electronics, an application of chaotic dynamics in the digital
systems[1] - specially, on a sequential system - is presented
in this paper.

The paper is organized as follows:

" In section II, we first introduce Mealy and Moore machines
as representative sequential systems, and then we also present
chaotic state: machine which has chaotic characteristics for
comparing two previous machines and the chaotic state
machine. To explain the essential difference between the
traditional machines and chaotic state machine, we illustrate
each of the state descriptions and canonical implementations
for the ‘above three state machines.

In section III, chaotic properties of chaotic sequential state
machine are specified and verified. The last section concludes
the paper with some remarks.
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1. Chaotic state machine

1. Mealy and Moore machines{2][3]{4]

In this subsection, we introduce the state descriptions and
canonical implementations of Mealy and Moore machines for
comparing these and our chaotic state ‘machine.

- Mealy machine
A sequential system is spec1ﬁed by means of a state
description.
The state description of a sequential system consists of the
output function and state-transition function.
<State description>
State -transition function : S(t+1) = G(S(1),X(t))
Output function S Z() = H(SH,X(®)

In a Mealy machine the output at time t depends on the state
at time t and on the input at time t.

S{t+1) S(t)
Ca|—

-

|CK

C's : Combinational network . S : State register, X : Input ,

Z : Output , CK : Clock .
Fig. 1. Canonical implementation of Mealy machine

<Canonical implementation>
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The canonical implementation (also called Huffman-Moore
implementation) of a sequential system is based directly on
its state description. Fig. 1 shows the canonical imple-
mentation of Mealy machine.

The separation of the combinational network into two
independent subnetworks is made only to illustrate the
difference; in a practical implementation this separation
would not be made since both networks can share some
modules.

- Moore machine

<State description>
State-transition function : S(t+1) = G(S(t),X(t))
Output function D Z() = H(S®)

In a Moore machine the output at time t depends only on the
state at time t. ’

<Canonical implementation>

L.

S(t+1) S() z
X C1 Cz —

(24

C's : Combinational network , S : Stole register. X : Input ,

Z : Output, CK : Clock.
Fig. 2. shows the canonical implementation of Moore machine.

2. Chaotic State Machine

In this subsection, we suggest a new state machine for
generating chaotic but predictable states, inputs and outputs
by using chaotic dynamics for the functions of one variable.

[Definition]
Chaotic state machine is a state machine which has the
characteristics of chaotic motions.

Let us begin with the consideration of digital systems.
Digital systems are classified into two classes: Sequential
systems and combinational systems.

In sequential systems, the output at time t depends not only
on the input at time t but also on previous inputs. The system
has memory with more than one state.

The state description of sequential system is

State-transition function : S(t+1) = G(X(1),S(t)),
Output function cZ() = HEX®),S(1)).

In the case of Moore, output function which was already
shown in subsection A is

Z(t) = H(S®)).

In combinational systems, on the other hand, the output at
time t depends only on the input at time t. We can say that
the system has no memory, since the output does not depend
on previous inputs. Because of this, the concept of state has
no significance for combinational systems, and therefore
state-transition function does not exist.

The output function of combinational system is

Z(t) = HX({)).

With the consideration of the descriptions for traditional
sequential systems, we specify a chaotic state machine which
has the characteristics of chaotic dynamics for functions of
one variable.

[Proposition]

A state description and the canonical implementation of
chaotic state machine are based on the descriptions of
traditional sequential systems.

(Proof) One advantage with the above proposition is that
we can obtain the concept of chaotic state machine easily.

<State description>

The state description of a chaotic state machine is written
as follows:
State-transition function is

S(t+1) = D(S®), X@).
Output function is
Z(t) = HX(®).

[Lemma 1] Function D is a deterministic chaotic function.

(proof) Chaotic output is produced either when function D is
a deterministic chaotic function[10] or when a
strongly chaos function is used.[7]

Recall that the form of the state description is similar to that
of the Moore system.

[Theorem]

Chaotic state machine using the characteristics of chaotic
dynamics for functions of one variable has the properties of
chaotic motions.

(Proof) The proof of the properties for a chaotic state
machine is given in section IIL

<Canonical implementation>

The canonical implementation of a chaotic state machine is
also obtained directly from its state description. We show the
canonical implementation in Fig. 3.

~
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L

Combinational
S(t+1) [ S(t) zZ
network
—— | (shift register)

K

C : Combinational network , S : State register , X : Input ,

Z : Output, CK : Clock .

Fig. 3. Canonical implementation of chaotic state machine

<Time behavior>

Time behavior of a chaotic state machine corresponds to
the description of a function D such that

Z =D( X, Spar )

where X and Z are time functions and not the values at a
particular t (these we call X(t) and Z(t), respectively), and
Sinr is the state before the input time function is applied.
Specially, in the case of chaotic state machine, St is
directly connected to input so that its output at time t+1 is
equal to the input at time t. Time behavior is illustrated in
Fig. 4.

~ Fig. 4. Time behavior of chaotic state machine

ITI. Chaotic properties of chaotic state
machine

In order to demonstrate the properties of chaotic state
machine, we introduce the three common characteristics of
chaos as follows [8][9][10](12]:

1. Sensitive dependence on initial conditions
2. Dense periodic points, and
3. Mixing (also called transitivity [7])

Then, to show the above characteristics for chaotic state
machine, we are now going to discuss in turns how these
appear in chaotic state machine.

1. Sensitive dependence on initial conditions

There are mamy chaos functions that can produce chaotic
behaviors. However, in our discussion and in this subsection,
the focus of our presentation is how the baker’s function (also
called saw-tooth function) appears as the basic chaos
generator in chaotic state machine. Though this approach may
seem rather artificial, it has turned out that the qualitative
phenomena of the saw-tooth operation are in fact the one of
paradigm of chaos in dynamical systems. And by the
saw-tooth transformation the properties of chaotic state
machine can be observed and completely analyzed mathe-
matically. The characteristic of sensitivity is central to chaos.
To illustrate sensitive dependence on initial conditions of
chaotic state machine, we first turn to the saw-tooth
transformation. We begin with a new notation for the
saw-tooth function which is different from the original
definition as follows:

Original equation is

Unit interval
2X if X <
2
SX) =
Unit interval

e A e —

2X-1 if X =
2

where unit interval = [ 0,1 ), in which ” } ” means that ”1”
is not included.

New notation is
Frac(X) = X-k if k < X < kt1, k integer.

With new notation, the saw-tooth transformation can be
written as

SX) = Frac2X) for 0 < X <1,

and we reveal a new interpretation by passing to binary
representation of the real number X in unit interval or for any
decimal number.[6]

For example, 4 = 0.1, 34 = 0.11, 14 = 0.010101 - - - =
0.01 (over lining means periodic repeatition), 7 = 111, 12 =
1100, etc. .

Now we can consider the saw-tooth transformation to be shift
operation. Multiplication by 2 in the equation S(X) =
Frac(2X) means passing from O.aaxaz « + - ax to ajaa;

- - a, where the a, is binary digit, i.e., each ay is either
0 or 1.5]
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Moreover, if we remove the binary point in the binary
representation of a real number x in the unit interval, there
is no difference between the binary repesentation of a real
number x in the unit interval and that of any decimal number.
A binary representation without the binary point is only
desired as an input of the shifter or state register in the
electronic circuits.

Let us argue that the property of sensitivity holds for the

shift operations of the shifter. One useful observation related
to binary expansions is the following.

Let x and y be decimal numbers having 4-bit blnary
representations

= 1110 and y = 1101

and we implement a chaotic state machine with the block -

diagrams of shifter and state register in Fig. 5.

Serial right
input Initiqlize LoaD
o | | Lo |
L s N
o] = [ o] 2l =
s 4-bit o, S'“;_\ ie 4-bit  qu z
shift . stote
. register O. s__*_\ i, register q.| 2 2.
Sa ;
[N P af 2 |z
LS
Xi T cre

Serial teft input cLean

Fig. 5. Implementation of chaotic state machine

Tables 1 and 2 illustrate the operation of a 4-bit
bidirectional shift- register in Fig. 5.

Comparing table 1 and table 2, we can verify that there
exists number x arbitrarily close to number y such that the
outcome of the shift operation started at numbers x and y will
eventually differ by a certain threshold. This threshold must
be the same for all numbers x of the binary representation
and is called the sensitivity constant.

However, the phenomenon of sensitivity always magnifies
even by one digit deviation. By the previous descriptions and
illustrations, the proof of sensitivity in chaotic state machine
is completed. Next we will exhibit the property of dense
periodic points.

2. Dense periodic points .

What happens if we specify the initial state of chaotic state
machine as follows:

X = ajarasz---as.

Undoubtedly we have an 8-cycle state repeats after 8th left
shift operation.

Also, what happens if we specify the initial state as
follows:

Y = ajazaz --ak.

By left shift operation, clearly we can find periodic points in
all 2° subintervals. But more importantly, for any given
number x, we can find a number y arbitrarily close to x,
which is periodic by shifter.

Let us see how they work like dense periodic points. If x
= a;a233--ap1a, for some n then choose y =.ajaas--aws ax
for some k ’

¢ where n=k and a’ means the dual binary digit, that is,
| ¢ 1if a=0 |
I a = I
t L0 if a=1. J

then x and y differ only by (at most) 2', and y is periodic.
This means that periodic points are dense for the shift
operation.

An illustrative example for dense periodic points is given
in Fig. 6 by using Tables 1 and 2.

8.2

(10000171
Periodicity
ditdjo.e 0 feee-a-oToll
(IO |o. 1011
(0TI 0. 0111 .
Mixing :
Sy
: dense
: periodic
points
3 X
0 .0 0.1 0.11 (IT10) 1
(0000) (o) mm (10000)
(a) Cycle of periodic 4 for initial state x=1110

S,z

(10000)71
({10} (0. 1110
Periodicity | /!
v/
(I0T) 6. 1011
(0TT1}{0. 0111
Mixing H
s
N
! dense
periodic
points
. . .
[ .0 0.1 0.11 ({T01) 1
{0000} (IoT1) (iT10) (10000}

(b) Cycl_e of periodic 4 for initial state y=1101

Fig. 6. Illustration of dense periodic points and mixing by
using two period 4 cycles
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Table 1. Left shift operations for x = 1110

Number of Decimal
Shift Output Q Period
3 Numbers
Operations
INITIAL State 1110 14
LOAD I=1110 1110 14
1 LsH 1101 B 1 period
2 LSH 1011 11 S e
3 LSH 0111 7 | With periodic
4 LSH 1110 14 | Hovele
5 LSH 1101 13 .
6 LSH 1011 11 2erh period
7 LSH 0111 7 Xﬁycll’:md’c
8 LSH 1110 14
9 LSH 1101 13 | 3rd period

Table 2. Left shift operations for y = 1101

Number of |- .
Shift Output Q Decimal | iod
) Numbers
QOperations
INITIAL State 1101 13
LOAD 1=1101 1101 13
1 LSH 1011 11 .
2 LSH o111 7 |lstperiod
5 LSH 1110 14 with , periodic
4 LSH 1101 13 |Hoyele
5 LSH 1011 11 _
6 LSH o111 7 |Pnd period
7 LSH 1110 g ViR 1 periodic
8 LSH 1101 13 [Hovele
9 LSH 1011 11 |3rd period
3. Mixing

The mixing property is if we can get everywhere from
anywhere. It is straightforward to check this property for
chaotic state machine.

Let us choose any two initial number x and y as follows:

x = 1110, and y = O111.
Next we initialize the state register with number x which,
after exactly 3 iterations of the left shift operation, will be
equal to number y. '
In the case of the saw-tooth transformation (in other words,
by shift operation), we can hit any target number and state
with chaotic state machine according to time t.

. An illustrative example was already shown in Fig. 6.
With the previous two subsections and this subsection, the
proof of three characteristics for chaotic state machine is
completed.

IV, Conclusion

In this paper our goal has been to provide chaotic motion
to a sequential systems or digital systems, and we have
shown that chaotic motion of the output and state of chaotic
state machine also rely on the dynamics only through the
deterministic chaotic functions.

We have demonstrated the motion of chaotic state machine
using only the saw-tooth function because of the simplicity
and substitution property into other chaotic functions, like the
tent function and quadratic functions.[8][10}[11]

If chaotic state machines are designed and implemented by
using other chaotic functions of more than one variable, there
must be more various chaotic motions.

If properly designed, chaotic system may capture the
essential features of the complex electronic circuits with
chaotic motions.[12] But these remain as future research
areas.
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