FDTD 방법을 이용한 휴대폰 전파의 인체 흡수전력량 산출

Computation of Absorbed Power adiated from a Portable Phone Using FDTD

  • 김채영 (경북대학교 전자·전기공학부) ;
  • 이승학 (경북대학교 전자·전기공학부) ;
  • 정백호 (호서대학교 정보통신공학부)
  • 발행 : 1998.08.01

초록

본 논문은 유한차분 시간영역 해석법(Finite-Difference Time-Domain method)을 사용하여 1.8 GHz용 휴대폰으로부터 방출된 전파의 인체 두부에 흡수된 전력량을 산출하였다. 이를 위하여 인체 두부를 7층 매질로 모델령하였고, 휴대폰은 금속상자에 부착된 모노폴 안테나로 모텔링하였다. 모델링에 사용된 인체 두부와 휴대폰의 크기는 상용의 크기를 갖도록 하였다. 이를 위하여 모노폴 안테나의 길이는 4.5 em으로 하였다. 설정된 모텔링하에서 인체의 위해 정도를 알려주는 지수인 비흡수율(SAR-Specific Absorption Rat te)의 분포를 계산하였고 그 결과 비홉수율이 최대가 되는 지점은 인체 두뇌의 깊숙한 점이 아닌 두부의 표피근 방임을 알게 되었다. 그리고 설정된 조건하에서 그 최대치는 1.4 mW/g이었는데, 이는 국제 권고치인 1.6 mW/g보다 약간 작은 값이었다.

Based on FDTD(Finite-Difference Time-Domain) method the human head absorbed power radiated from a 1.8 GHz portable phone is computed. For this computation the 7 layered media for the human head modeling and the monopole antenna attached to metallic box for the portable phone are used. To reflect the real circumstances typical sizes of human heads and portable phones are considered in the calculation. The length of monopole antenna is 4.5 cm. Under the predetermined model the distribution of SAR over the human head are calculated, and from which the place of maximum SAR is near the head skin surface, not deep places far into the head. The computation shows the maximum SAR to be 1.4 mWg somewhat less than the internationally adopted value of 1.6 mW/g.

키워드

참고문헌

  1. IEEE Trans. Microwave Theory Tech. v.44 no.10 A study of the handset antenna and human body interaction M. Okoniewski;M. A. Stuchly
  2. IEEE Proceedings v.83 no.1 EM interaction of handset antennas and a human in personal communications M. A. Jensen;Y. Rahmat-Samii
  3. IEEE Trans. Electrmagn. Compat. v.38 no.3 Evaluation of the SAR distribution in the human head for celluar phones used in a partially closed environment P. Bernardi;M. Cavagnaro;S. Pisa
  4. IEEE Trans. Electromagn. Compat. v.22 no.3 Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems A. Taflove
  5. The Finite Difference Time Domain Method for Electromagnetics K. S. Kunz;R. J. Luebbers
  6. IEEE Trans. Antennas Propagt. v.42 no.8 Performance analysis of antennas for hand-held transceiver using FDTD M. A. Jensen;Y. Rahmat-Samii
  7. IEEE Trans. Microwave Theory Tech. v.23 no.8 Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations A. Taflove;M. E. Brodwin
  8. IEEE Trans. Antennas Propagt. v.14 Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media K. S. Yee
  9. IEEE Trans. Electromagn. Compat. v.22 no.3 Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems A. Taflove
  10. The Finite Difference Time Domain Method for Electromagnetics K. S. Kunz;R. J. Luebbers
  11. IEEE Microwave and Guided Wave Letters. v.3 no.9 A new finite-difference time domain(FDTD) algorithm for efficient field computation in resonator narrow-band structures R. Mittra;P. H. Harms
  12. IEEE Trans. Electrmagn. Compat. v.23 no.4 Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations G. Mur
  13. IEEE Trans. Antennas Propagat. v.36 Detailed FDTD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens A. Taflove;K. R. Umashankar;B. Beker;F. Harfoush;K. S. Yee