Yeast의 FLP/FRT 시스템을 이용한 BmNPV의 유전자 재조합

Construction of Recombinant Bombyx mori Nuclear Polyhedrosis Virus Using a FLP/FRT System of Yeast, Saccharomyces cerevisiae 2$\mu$m plasmid

  • 강석우 (농촌잔흥청 잠사곤충연구소) ;
  • 윤은영 (농촌진흥청 잠사곤충연구소, 농촌진흥청 잠사곤충연구소, 농촌진흥청 잠사곤충연구소, 경북대학교 농과대학, 서울대학교 농업생명과학대학)
  • 발행 : 1998.06.01

초록

For the construction of plasmid and bmNPV sarrying the FRT recognition site for the FLP recombinases, we synthesized the wild type FRT dligonucleotides. The target FRT sequences consist of three 13bp repeated DNA sequences; two repeats in a direct orientation and one inverted relative to the other two. In addition, there is an 8bp spacer region between the repeats which determune the orientation of the FRT recombination site. In order to place the FRT site both in target BmNPV genome and the transfer vector, we constructed a plasmid, FRT site both in the target BmNPv genome and the transfer vector, we constructed a plasmid, pFRT$\beta$-gal, carrying the FRT sites within the cloning sites of pSV vector and a recombinant BmNPV, vFRTPH, carrying the FRT sites at a downstream of polyhedrin promotor, respectively. In order to test the functionality of the FLP/FRT site-specific recombination system, vFRTPH, pFRT$\beta$-gal and pHsFLP DNA were co-transfected into BmN-4 cells. The resulting recombinant virus was designated a vFRT$\beta$2-gal. From construction analysis of the vFRT$\beta$2-gal with PCR technique it was concluded that the entire pFRT$\beta$-gal plasmid with $\beta$-galactosidase gene and origines of replication flanked by two functional hybrid FRT sequences. The efficiency of recombination was 8.7%, which was higher than that(2.2%) of recombination between a conventional transfer vector and the wild type BmNPV.

키워드

참고문헌

  1. Genetics. v.131 Use of a Yeast site-specific recombinase to produce female germline chimeras in Drosophila. Choi, T. B.; N. Perrimon
  2. Science. v.252 Site-specific recombination between homologous chromosomes in Drosophila. Golic, K. G.
  3. cell. v.59 The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Golic, K. G.; S. Lindquist
  4. Nature. v.286 Nucleotide sequence of the yeast plasmid. Hartley, J. L.; J. E. Donelson.
  5. Nucleic Acids Res. v.19 A bacterial model system for chromosomal targeting. Huang, L. C.; E. A. Wood; M. M. Cox.
  6. J. Virol. v.54 Polyhedrin gene of Bombyx mori nuclear polyhedrosis virus. Iatrou, K. K. Ito; H. Witkiewicz.
  7. Proc. Natl. Acad. Sci. no.82 Two-micrometer circle site-specific recombination:The minimal substrate and the possible role of flanking sequences. Jayaram, M.
  8. Science. v.259 Shutdown of class switch recombination by deletion of a switch region control element. Jung, S.; K. Rajewsky; A. Radbruch
  9. Korean J. Seric. Sci. v.39 no.1 Expression of the FLP recombinase of the 2 ㎛ plasmid of yeast in the cultured cells of Bombyx mori using a transient expression vector. Kang, S. K.; E. Y. Yun; S. H. Kim; K. Y. Kim; M. S. Han; S. K. Kang
  10. Trends Genet. v.9 Site-specific recombinases:tools for genome engineering. Kilby, N. J.; M. R. Snaith; J. A. H. Murray
  11. Nucleic Acids Res. v.18 Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Kitts, P. A.; M. D. Ayres; R. D. Possee
  12. Biotechniques. v.14 A method for producing recombinant baculovirus expression vectors at high frequency. Kitts, P. A.; R. D. Possee
  13. Cytotechnology. v.8 High level expression of a frog α-amidating enzyme, AE-II, in cultured cells and silkworm using a Bombyx mori nuclear polyhedrosis virus expression vector. Kobayashi, J.; S. Imanishi; H. Inoue; K. Ohsuye; K. Yamaichi; N. Tsuruoka; S. Tanaka
  14. Mol. Gen. Genet. v.242 Functional expression of the Yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Lloyd, A. M.; R. W. Davis
  15. J. Virol. v.67 Efficient generation of infectious recombinant baculoviruses by site-specific transposon-medeated insertion of foreign genes into a baculovirus genome propagated in Escherischia coli. Luckow, V. A.; S. C. Lee; G. F. Barry; P. O. Olins
  16. Nucleic Acids Res. v.21 Activity of Yeast FLP recombinase in maize and rice protoplasts. Lyznik, L. A.; J. C. Mitchell; L. Hirayama; T. K. Hodges
  17. Invertebrate cell system and applications. Maeda, S.
  18. Nucleic Acids Res. v.21 FLP-mediated recombination in the vector mosquito, Aedes aegypti. Morris, A. C.; T. L. Schaub; A. A. James
  19. Science. v.251 Recombinase-mediated gene activation and site-specific integration in mammalian cells. O'Gorman, S.; D. T. Fox; G. M. Wahl
  20. Baculovirus expression vectors-A laboratory manual. O'Reilly, D. R.; L. K. Miller; V. A. Luckow
  21. J. Biol. Chem. v.266 Identification of the DNA-binding domain of the FLP recombinase. Pan, H.; D. Clary; P. D. Sadowski
  22. Nucleic Acids Res. v.20 A new method for the isolation of recombinant baculovirus. Patel, G.; K. Nasmyth; N. Jones
  23. Nucleic Acids Res. v.20 Highly efficient generation of recombinant baculoviruses by enzymatically mediated site-specific in vitro recombination. Peakman, T. C.; R. Harris; D. R. Gewert
  24. Mol. Cell. Biol. v.4 Strong and regulated expression of Escherichia coil ß- galactosidase in insect cells with a baculovirus vector. Pennock, M. D.; C. Shoemaker; L. K. Miller
  25. A laboratory manual(2nd ed.) Molecular cloning Sambrook, J.; E. F. Fritsch; T. Maniatis
  26. Proc. Natl. Acad. Sci. U.S.A. v.82 The FLP recombinase of the yeast 2-㎛ plasmid:Characterization of its recombination site. Senecoff, J. F.; R. C. Bruckner; M. M. Cox
  27. Gene targeting. Vega, M. A.
  28. J. Virol. v.64 Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the ß-galactosidase gene. Vialard, J.; M. Lalumiere; T. Vernet; D. Levin; C. Richardson
  29. J. Biol. Chem. v.270 Homology requirements for ligation and strand exchange by the FLP recombinase. Zhu, X. D.; G. Pan; K. Luetke; P. D. Sadowski