Magnetic Properties and Production of Fe-N Phases by Plasma Source Ion Implantation

플라즈마 이온주입 방법에 의한 질화철 제조 및 자기적 성질

  • Published : 1998.02.01

Abstract

Fe-N(iron-nitrogen) crystal phases were prepared by nitrogen ion implantation into $\alpha$-Fe foil with Plasma Source Ion Implantation (PSII). Ion implantation time of sample is treated 15 minutes(FeN15) and 30 minutes (FeN30). The nitrogen depth profiles measured by Auger electron spectroscopy (AES) were determined to be about 12000 $\AA$ and 4000 $\AA$ for the samples of FeN15 and FeN30, respectively. The results of vibrating sample magnetometer (VSM) show that the saturation magnetization of the samples of as-implanted FeN15 and FeN30 was higher than that of pure $\alpha$-Fe foil, which may be owing to $\alpha$'-$Fe_8N$ or $\alpha$"-$Fe_{16}N_2$ phases. Accordingly this study shows the possibility of the partial formation of $\alpha$' or $\alpha$" phase in iron nitrogen produced by PSII method.II method.

플라즈마 이온주입 장치를 이용하여 $\alpha$-Fe foil에 질소 이온을 주입하여 질화철 결정상을 만들었으며, 이때 질소 이온 주입시간을 15분(FEN15)과 30분 (Fe30)으로 처리되었다. 오제 전자 분광법(Auger electron spectroscopy : AES)을 이용하여 측정한 주입된 질소 이온의 깊이는 사편 FeN15와 FeN30에서 각각 12000$\AA$과 40000$\AA$으로 나타난다. 진동 시편 자력계(vibrating sample magnetometer : VSM)측정결과 as-implanted 각각의 시편은 포화자화 값이 순수한 $\alpha$-Fe foil 보다 증가되었으며, 이는 $\alpha$'-Fe8N 또는 $\alpha$'-Fe16N2의 결정구조가 그원인으로 판단된다. 따라서 본 연구는 플라즈마 이온주입 방법으로 제작된 질화철에서 부분적인 $\alpha$'또는 $\alpha$'의 졀정구조 형성 가능성을 확인할 수 있었다.

Keywords

References

  1. J. Appl. Phys. v.76 W. E. Wallace;M. Q. Huang
  2. J. Appl. Phys. v.76 Robert M;Metzger;Xiaohua Bao
  3. J. Appl. Phys. v.76 J. M. D. Coey
  4. Proc. R. Soc. London. Ser. v.A216 K. H. Jack
  5. Proc. R. Soc. London. Ser. v.A200 K. H. Jack
  6. Appl. Phys. Lett. v.20 T. K. Kim;M. Takahashi
  7. J. Phys. Cond. Matter v.6 J. M. D. Coey;K O 'Donnel;Qi Qinian;E Touchais;K. H. Jack
  8. J. Appl. Phys. v.73 M. H. Krydr;S. Wang;K. Rock
  9. Thin Solid Films v.279 C. Lin;D. C. Sun;S. Liu Ming;E. Y. Jiang;Y. G. Liu
  10. Thin Solid Films v.279 T. Weber;L. de Wit. F. W. Saris;P. Schaaf
  11. Appl. Phys. Lett. v.54 Kensuke Nakajima;Shoichi Okamoto
  12. Appl. Phys. Lett. v.56 Kensuke Nakajima;Shoichi Okamoto
  13. J. Appl. Phys. v.76 Y. sugita;H. Takahashi;M. Komuro;K. Mitsuoka;A. Sakuma
  14. IEEE Trans. on Magn v.29 M.Takahashi;H. Shoji;H. Takahashi;T. Wakiyama;M. Kinosita;W. Ohta
  15. Japn. J. of Appl. Phys. v.23 K. Umeda;Y. Kawashimo;M. Nakasone;S. Hardada;A. Taki
  16. Thin Solid Films v.112 U. Ebershach;F. Henny;U. Winkler;G. Reisse;C. Weissmantel
  17. J. Appl. Phys. v.65 J. R. conrad;S. Baumann;R. Fleming;G. P. meeker
  18. J. Appl. Phys. v.62 J. R. conrad;J. L. Radtke;R. A. Dodd;Frank J. Worzala
  19. Surf. Coat. Techol. v.82 S. Han;H. Kim;Y. Lee;J. Lee;S. Kim
  20. Surf. Coat. Techol. v.93 S. Han;Y. Lee;H. Kim;G. Kim;J. lee;J. Yoon;G. Kim
  21. Ion Implantation: Basics to Device Fabrication Emanuele Rimini
  22. The Power Method in X-ray crystallography Leonid V. Azaroff;Murtin J. Buerger
  23. Powder diffraction file No. 5-0628 JCPDS
  24. Conf. on high Field Mang. R. Pauthenet