Abstract
A regression model with basin physiographic characteristics as independent variables was calibrated for regional flood frequency analysis. In case that high correlations existing among the independent variables the ridge regression has been known to have capability of overcoming the problems of multicollinearity. To optimize the ridge regression model the cost function including regularization parameter must be minimized. In this research the genetic algorithm was applied on this optimization problem. The genetic algorithm is a stochastic search method that mimic the metaphor of natural biological heredity. Using this method the regression model could have optimized and stable weights of variables.
빈도별 홍수량의 지역분석을 위하여 유역의 지형특성을 독립변수로 이용하는 회귀모형을 검정하였다. 그런데 이들 독립변수들간의 상관관계가 존재할 경우 능형회귀모형이 이용되기도 하는 이 방법은 다중공선성 문제를 극복하는데 적합한 방법으로 알려져 있다. 능형회귀모형을 최적화하기 위해서는 조정변수가 포함되는 비용함수를 최소화하여야 한다. 본 연구에서는 이 최적화를 위하여 유전알고리즘을 이용하였다. 유전알고리즘은 자연 생물의 유전 및 진화과정을 모방한 추계학적 탐색방법을 말한다. 이러한 유전알고리즘을 이용하여 지역분석 모형을 검정한 결과 안정된 매개변수의 가중치를 얻을 수 있었다.