Applicability of Groundwater Quality Monitoring Network Design Methodologies

지하수 수질관측망 설계방법론의 적용성 검토

  • Lee, Sang-Il (Dept.of Civil Environment, Engineering College, Dongguk University)
  • 이상일 (동국대학교 토목환경공학과)
  • Published : 1998.12.01

Abstract

Protection of groundwater resources from contamination has been of increasing concern throughout the past decades. In practice, however, groundwater monitoring is performed based on the experience and intuition of experts or on the convenience. In dealing with groundwater contamination, we need to know what contaminants have the potential to threat the water quality and the distribution and concentration of the plumes. Monitoring of the subsurface environment through remote geophysical techniques or direct sampling from wells can provide such information. Once known, the plume can be properly managed. Evaluation of existing methodologies for groundwater monitoring network design revealed that one should select an appropriate design method based on the purpose of the network and the availability of field information. Integer programming approach, one of the general purpose network design tools, and a cost to-go function evaluation approach for special purpose network design were tested for field applicability. For the sam contaminated aquifer, two approaches resulted in different well locations. The amount of information, however, was about the same.

지하수질 감시를 위한 관측은 지하수를 사용하는 주변 인구의 보건은 물론이고 궁극적으로는 지하수자원 보전이라는 측면에서 매우 중요하다. 그러나 지하수 수질관측망은 설계부터 운영에 이르기까지 임의적이고, 체계적이기보다는 경험에 의존하거나 과학적이지 못한 방식으로 시행되고 있는 것이 사실이다. 본 연구는 지하수질 관측망의 효율적 배치를 위한 방법론의 현장적용성을 검토하기 위하여 대표적인 설계방법론을 대상으로 비교연구 하였다. 그 결과, 지하수질 관측망의 설계 시에는 관측망 설치의 목적을 명확히 설정하는 것이 중요하며, 현장정보의 확보수준에 따라 선택될 방법론이 달라져야 함을 알 수 있었다. 또한, 범용관측망 설계기법의 하나인 Integer Programming에 의한 방법과 지하수 정화 목적 관측망 설계기법의 하나인 Cost-to-go 함수 비교법을 동일한 대수층을 대상으로 적용한 결과, 각기 다른 관측정 위치를 얻었으나 요구되는 정보의 양은 비슷하였다. 두 방법 모두 지하수 오염을 모의할 정도의 정보만 확보되면 현장적용이 가능하며, 이를 통해 보다 객관적 근거에 이해 관측망 설계가 이루어질 것으로 판단된다.

Keywords

References

  1. EPA-600/8-84-010 The Cost Digest: Cost Summaries of Selected Environmental Control Strategies De Wolf, G.;Murin, P.;Jarvis, J.;Kelly, M.
  2. Water Resour. Res. v.25 no.2 Stochastic analysis of nonstationary subsurface solute transport, 1. Unconditional moments Graham, W.;McLaughlin, D.
  3. Water Resour. Res. v.25 no.11 Stochastic analysis of nonstationary subsurface solute transport, 2. Conditional moments Graham, W.;McLaughlin, D.
  4. Ground Water Monitor. Rev. Modeling groundwater quality sampling decisions Hsueh, Y.W.;Rajagopal, R.
  5. Water Resour. Res. v.28 no.3 A location modeling approach for groundwater monitoring network augmentation Hudak, P.F.;Loaiciga, H.A.
  6. Water Resour. Res. v.25 no.10 Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport Knopman, D.S.;Voss, C.I.
  7. Water. Resour. Res. v.25 no.10 Optimizatiion of monitoring well installation time and location during aquifer decontamination Lee, S.-I.;Kitanidis, P.K.
  8. Proc. VII Int'L. conf. Computational Methods in Water Resources v.2 Groundwater monitoring network design Loaiciga, H.A.
  9. Water Resour. Res. v.25 no.8 An optimization approach for groundwater quality monitoring network design Loaiciga, H.A.
  10. J. Hydraulic Engineering v.118 no.1 Review of ground water quality monitoring network design Loaiciga, H.A.;Charbeneau, R.J.;Everette, L.G.;Fogg, G.E.;Hobbs, B.F.;Rouhani, S.
  11. Water Resour. Res. v.23 no.2 Groundwater contamination from wate management site: The interaction between risk-based engineering design and regulatory policy Massmann, J.;Freeze, R.A.
  12. r. Resour. Res. v.23 no.2 Groundwater contamination from waste management site: The interaction between risk-based engineering design and regulatory policy, 2, Results Massmann, J.;Freeze, R.A.
  13. Water Resour. Res. v.24 no.8 A method for locating wells in a groundwater monitoring network under conditions for uncertainty Meyer, P.D.;Brill Jr., E.D.
  14. Water Resour. Res. v.30 no.9 Monitoring network design to provide initial detection of groundwater contamination Meyer, P.D.;Valcchi, A.J.;Eheart, J.W.
  15. Water Resour. Res. v.21 no.6 Variance reduction analysis Rouhani, S.
  16. J. of Hydrology v.103 Geostatistical schemes for groundwater sampling Rouhani, S.;Hall, T.J.
  17. Ground Water Monit. Rev. no.Fall Risk-based selection of monitoring wells for assessing agricultural chemical contamination of ground water Scheibe, T.D.;Lettenmaier, D.P.
  18. Water Resour. Res. v.27 no.4 Optimal data acquisition stategy for the development of a transport model for groundwater remediation Tucciarelli, T.;Pinder, G.