The Disruption Yeast Cell Wall by chemical Treatment

화학적 처리방법에 의한 효모의 세포벽 제거

  • Published : 1998.04.01

Abstract

The cell of Kluyveromyces fragilis yeast, which is worthy of an algal substitute, was disrupted by a chemical treatment to increase the digestion of filter-feeders that yeasts are fed to. The optimum conditions of the chemical treatment were obtained by incubating yeasts at 3$0^{\circ}C$ for one hour after treated by 1 M of Na$_{2}$-EDTA that was dissolved in 0.2 M of Tris-buffer and by 0.3 m of 2-mercaptoethanol. The percentage of protop[last production was about 30%. The percentage could be doubled by the pretreatment of three times of 30 seconds sonication.

효모를 먹이로 하는 filter-feeder들의 소화력을 높이고자, algae의 대용물로서 가치가 있는 Kluyveromuces fragilis효모를 화학적 처리방법에 의해 세포벽을 바괴시켰다. 화학적 처리방법의 최적조건은 0.2 M Tris-buffer에 용해시켜 만든 1M 의 $Na_2EDTA$와 0.3 M의 2-mercaptoethanol을 처리한 후 $30{\circ}C$배양기에서 1시간 배양하는 조건에서 얻어졌다. 이때, 약 30%의 protoplast yeast를 실시함으로써, 그 생성률을 약 2배이상 올릴 수 있었다.

Keywords

References

  1. J. World Aqua. Soc. v.21 no.1 Baker's yeast as a potential sunstitute for live algae in aquaculture diets : Artemia as a case study. Coutteau, P.;Lavens, P.;Sorgeloos, P.
  2. J. Korean Fish. Soc. v.29 no.6 Production of yeast diet for aquaculture in batch fermenters. Moon, J-H.;Kim, J. K.
  3. J. Bacteriol. v.173 Analysis of murein and murein precursosr during antibiotic-induced lysis of Escherichia coli Kohluausch, U.;Holtje, J. V.
  4. Trans. Instn. Chem. Engrs. v.49 Release of protein from baker's yeast(Saccharomyces cerevisiae) by disruption in an industrial homogeniser. Hetherington, P. J.;Pandit, A. B.;Joshi, J. B.
  5. Yeast technology (2nd ed.) Yeast derived products. Andrews, B. A.;Nagodawithana, T. W.
  6. Biotechnol. Bioeng. v.23 The isolation of lytic enzyme from Cytophaga and their application to the rupture of yeast cells Asenjo, J. A.;Dunnill, P.
  7. Ann. N.Y. Acad. Sci. v.542 Design of enzyme systems for selective product release from microbial cells. Asenjo, J. A.;Andrews, B. A.;Pitts, J. M.
  8. Biotechnol. Bioeng. v.31 A structured mechanistic model of the kinetics of enzymatic lysis and disruption of yeast cells Hunter, J. B.;Asenjo, J. A.
  9. Biotechnol. Bioeng. v.35 A population balance model of enzymatic lysis of microbial cells Hunter, J. B.;Asenjo, J. A.
  10. Phil. Trans. R. Soc. Lond. v.289 Biochemical and genetical approaches to the mechanism of action of penicillin. Spratt, B. G.
  11. Biotechnol. Bioeng. v.53 no.5 Chemical teatment of Escherichia coli : 1. extracation of intracellular protein from uninduced cells Falconer, R. J.;O'Neill, B. K.;Middelberg, A. P. J.
  12. Ann. N. Y. Acad. Sci. v.235 In mode and action of antibiotics on microbial walls and membranes Leive, L.
  13. Mocrobiol. Rev. v.49 Molecular basis of outer membrane permeablility Nikaida, H.;Vaara, M.
  14. Biochim. Biophys. Acta. v.506 The effect of toluene on the structure and permeablility of the outer and cytoplasmic membranes of Escherichia coli Smet, M. J.;Kingma, J.;Withlot, B.
  15. Biotechnol. Bioeng. v.37 Recomninant protein excretion in Escherichia coli JM 103 [pUC8] : Effects of plasmid content, ethylenediaminetetraacetate, and phenethyl alcohol on cell membrane permeability Ryan, W.;Parulekar, S. J.
  16. Biotechnol. Prog. v.7 Immobilization of Escherchia coli JM103[pUC8] in k-carrageenan coupled with recomninant protein release by in situ cell membrane permeabilization Ryan, W.;Parulekat, S. J.
  17. J. Bacteriol. v.171 no.10 Release of outer membrane fragments from wild-type Escherchita coli and from E. coli lipopolysaccharide mutants by EDTA and heat shock treatment. Marvin, H. J.;Beest, M. B. A.;Witholt, B.
  18. J. Membrane Biol. v.10 Purification of bacterial membrane protein : The use of guanidium thiocyanate and urea. Moldow, C.;Robertson, J.;Rothfield, L.
  19. Biotechnol. Bioeng. v.33 Protein release from Escherchia coli cells permeailization with guanidine-HCL and Triton X100 Hettwer, D.;Wang, K.
  20. J. Bacteriol. v.115 Solubilization of the cytoplasmic membrane of Escherchia coli by the ionic detergent sodium-lauryl sarcisinate Brusca, J. S.;Fletcher, G.;Wulff, J. L.;Earhart, C. F.
  21. J. Bacteriol. v.90 Effects of toluene on Escherchia coli Jackson, R. W.;DeMoss, J. A.
  22. J. Alppl. Microbiol. Biotechnol. v.6 A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in micobial biomass. Braunegg, G.;Sonnleitner, B.lLafferty, R. M.
  23. J. Bacteriol. v.89 Characterization of poly-β-hydroxybutyrate exteacted from different bacteria Lundgren, D. G.;Alper, R.;Schnaitman, C. C.;Marchessault, R. H.
  24. Arch. Microbiol. v.115 Recimbination after protoplast fusion in the yeast Candida torpicalis Fournier, P.;Provost, A.;Bourguignon, C.;Heslot, H.
  25. Inst. Microbiology, Academy of Science of the USSR v.44 no.2 Preparation of Candida utilis protoplasts. Lobyreva, L. B.
  26. J. Gem. Microbiol. v.61 Invertase and disulfide bridges in the yeast cell wall Kidby, D. K.;Davis, R.
  27. J. Ferment. Bioeng. v.71 Repeated-batch ethanol fermentation by a flocculating yeast, Saccharomyces cerevisiae IR-2. Kida, K.;Morimura, S.;Kume, K.;Suruga, K.;Sonoda, Y.