Mouse 임파구네서 ADP-ribosyltransferse의 glutamic acid 220과 222의 역할

Role of Glutamic Acids 220 and 222 in Mouse Lymphocyte ADP-ribosyltransferase

  • 김현주 (울산대학교 생명과학부)
  • 발행 : 1998.04.01

초록

다양한 동물세포로부터 그 cDNA가 dlining된 glycosylphosphatidylinositol-linked ADP-ribosyltransferase는 공통적으로 carboxy말단에 풍부한 glutamic acid motif (EEEVLP)를 소유하고 있다. 유사한 motif가 mouse 임파구의 ADP-ribosyltransferase(Yac-2)에서 발견되어진다. Yac-2는 ADP-ribosyltransferase 활성 뿐 아니라 NDA glycohyrolase의 활성도 소유하고 있다. yac-2에 있어, Glutamic acid가 풍부한 motif의 역할을 알아보기 위해 site-directed mutagensis가 수행 되었다. 돌연변이체인 E22OQ, E22OA, E222Q, E222A는 ADP-ribosyltransferase에 대해 불활성을 보였다. 이러한 결과는 Yac-2의 220번과 222번의 glutamic acid가 ADP-ribosyltransferase와 NDA glycohydrolase 활성에 필수적임을 나타내는 것으로, 이는 carboxy말단의 glutamic acid들이 Yac-2 효소의 활성에 중요한 역할을 함을 시사하는 것이라 하겠다.

A family of glycosylphosphatidylinositol-linked ADP-ribosyltransferases, of which cDNAs were cloned from various animal cells, possess a common Glu-rich motif (EEEVLIP) near their carboxyl termini. A similar notif was observed in the sequence of the mouse lymphocyte ADP-ribosyltransferase (Yac-s). Yac-2 has significant NAD glycohydrolase activity as well as ADP-ribosyltransferase activity. To verify the role of the Glu-rich motif in Yac-2, site-directed mutagenesis was performed. Mutants E220Q, E220A, E222A were inactive for ADP-ribosyltransferase activity. For NAD glycohydrolase activity, E220A, E222Q, and E222A were inactive. In contrast, E220Q was active as wild-type. Thus, Glu-220 and Glu-222 in Yac-2 are critical for ADP-ribosyltransferase and NAD glycohydrolase activity, indicating that the Glu-rich motif near the carboxy terminus plays an important role in the Yac-2 enzyme activity.

키워드

참고문헌

  1. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction. Williamson, K. C.;Moss, J.(ed.);Vaughan, M.(ed.)
  2. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction. Collier, R. J.;Moss, J.(ed.);Vaughan, M.(ed.)
  3. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction. Fishman, P. H.;Moss, J.(ed.);Vaughan, M.(ed.)
  4. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction. Ui, M.;Moss, J.(ed.);Vaughan, M.(ed.)
  5. Adv. Enzymol. v.61 ADP-ribosylation of guanyl nucleotide-binding proteins by bacterial toxins Moss, J.;Vaughan, M.
  6. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction. Wick, M. J.;Iglewski, B. H.;Moss, J.(ed.);Vaughan, M.(ed.)
  7. Proc. Natl. Acad. Sci. U. S. A. v.89 Moecular characterization of NAD : arginine ADP-ribosyltransferase from rabbit skeletal muscle. Zolkiewska, A.;Nightingale, M. S.;Moss, J.
  8. Biochemistry v.33 Immunological structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferase Okazaki, I. J.;Zolkiewska, A.;Nightingale, M. S.;Moss, J.
  9. J. Bio. Chem. v.269 Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells Tsuchiya, M.;Hara, N.;Yamada, K.;Osago, H.;Shimoyama, M.
  10. Gene v.164 Sequence of a chicken erythroblast mono(ADP-ribosyl)transfase-encoding gene and its upstream gegion. Davis, T.;Shall, S.
  11. Blood v.88 Molecular characterization of a glycisylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes Okaxaki, I. J.;Kim, H.-J.;McElvaney, G.;Lesma, E.;Moss, J.
  12. J. Biol. Chem. v.271 Cloning and characterization of a novel membrane-associated lymphocyte NAD : arginine ADP-ribosyltransferase. Okazaki, I. J.;Kim, H.-J.;Moss, J.
  13. J. Biol. Chem. v.268 Integrin α7 ad substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells Zolkiewska, A.;Moss, J.
  14. J. Biochem. v.110 Arginine-specific ADP-ribosyltransferase its acceptor protein p33 in chicken polymorphonuclear cells. Mishima, K.;Terashima, M.;Obara, S.;Yamada, K.;Imai, K.;Shimoyama, M.
  15. FEBS Lett. v.311 P33, and endogenous targer protein for arginine-specific ADP-ribosyltransferase in chicken polymorphonuclear leukocytes, is highly homologous to min-1 protein Yamada, K.;Tsuchiya, M.;Mishima, K.;Shimoyama, M.
  16. Eur. J. Biochem. v.204 ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils Terashima, M.;Mishima, K.;Yamada, K.;Tsuchiya, M.;Wakutani, T.;Shimoyama, M.
  17. J. Immunol. v.153 Reulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GIP-anchored/arginine ADP-ribosyltransferase Wang, j.;Nemoto, E.;Kots, A. Y.;Kaslow, H. R.;Dennert, G.
  18. J. Biol. Chem. v.270 Conservation of acomman motif in enzymes catalyzing ADP-ribosetransfer Takada, T.;Iida, K.;Moss, J.
  19. Mol. Microbiol. v.21 Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzmes, expressed by eukaryotes, bacteria and T-even bacteriophages. Domenighini, M.;Rappuoli, R.
  20. Biochemistry v.33 Active-site mutations of diphtheria toxin catalytic domain : role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Blanke, S. R.;Huang, K.;Wilson, B. A.;Papini, E.;Covacci, A.;Collier, R. J.
  21. J. Biol. Chem. v.269 Histidine-21 does not play a major role in diphtheria toxin catalysis. Johnson, V. G.;Nicholls, P. J.
  22. Mol. Microbiol. v.2 Amino acid sequence homology between the enzymic domains of diphtheria toxin and Pseudomonad aeruginosa exotoxin A. Carrol, S. F.;Colloer, R. J.
  23. Sourcebook of Bacterial Protein Toxins Structure and evolutionary aspects of ADP-ribosylating toxins Rappuoli, R.;Pizza, M.;Alouf, J. E.(ed.);Freer, J. H.(ed.)
  24. Infect. Immun. v.169 Extoxin A of Pseudomonas aeruginosa : Substitution of gluramic acid-533 with aspartic acid drastically reduces toxicity and enzyme activity. Douglas, C. M.;COllier, R. J.
  25. Proc. Natl. Acad. Sci. U. S. A. v.85 Subunit S1 of pertussis toxin : mapping of the tegions essential for ADP-ribosyltransferase Activity. Pizza, M.;Bartoloni, A.;Prugnola, A.;Siberstri, S.;Rappuoli, R.
  26. J. Biol. Chem. v.271 Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADP-ribosyl)transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins Koch-Nolte, F.;Petersen, D.;Balasubramanian, S.;Haag, F.;Kahlke, D.;Willer, T.;Kastelein, R.;Bazan, F.;Thiele, H.-G.
  27. J. Biol. Chem. v.271 Glutamic acid 207 in Rodent T-cell RT6 antigens is essential for arginine-specific ADP-ribosylation Hara, M.;Tsuchiya, M.;Shimoyama, M.
  28. Nucleic Acids res. v.18 Nucleotide and deuced amino acid seqience of the rat T-cell alloantigen RT6.1 Haag, F.;Koch, F.;Thiele, H. G.
  29. Proc. Natl. Acad. Sci. U. S. A. v.87 Primary structure of rat RT6.2, a nonglycosylated phosphatidylinositol-linked surface marker of postthymic T cell. Kock, F.;Haag, F.;Kashan;Thiele, H.-G.
  30. Nucleic Acids Res. v.18 Nucleotide and deuced amino acid seqience for the mouse homologue of the rat T-cell differentiation marker RT6. Koch, F.;Haag, F.;Thiele, H.-G
  31. J. Bacteriol. v.169 Evolutionaty origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae Yamamoto, T.;Gojobori, T.;Yokata, T.
  32. Nature v.306 Cholera toxin genes : nucleotide sequence, deletion analysis and vaccine development. Mekalanos, J. J.;Swartz, D. J.;Pearson, G. D.;Harford, N.;Groyne, F.;de Wilde, M.
  33. Infect. Immun. v.63 Characterization of Clostridium perfrigens Iotatoxin genes and expression in Escherichia coli. Perelle, S.;Gilbert, M.;Boquet, O.;Popoff, M. R.