111

© EHAFER L

Fault Coverage Improvement of Test Patterns for Com-

binational Circuit using a Genetic Algorithm

Key words : Fault coverage(1 A7 2 &), Test pattern(s] ~ E 3] &), Combinational circuit(Z
33 2), Genetic algorithm(-F21 g 1128} &)

Abstract

Test pattern generation is one of most difficult problems encountered in automating the design
of logic circuits. The goal is to obtain the highest fault coverage with the minimum number of test
patterns for a given circuit and fault set. Although there have been many deterministic algorithms
and heuristics, the problem is still highly complex and time - consuming. Therefore new approach-
es are needed to augment the existing techniques. This paper considers the problem of test pattern
improvement for combinational circuits as a restricted subproblem of the test pattern generation.
The problem is to maximize the fault coverage with a fixed number of test patterns for a given cir-
cuit and fault set. We propose a new approach by use of a genetic algorithm. In this approach, the
genetic algorithm evolves test patterns to improve their fault coverage. A fault simulation is used
to compute the fault coverage of the test patterns. Experimental results show that the genetic
algorithm based approach can achieve higher fault coverages than traditional techniques for most
combinational circuits. Another advantage of the approach is that the genetic algorithm needs no
detailed knowledge of faulty circuits under test.

1. Introduction highest fault coverage with the minimum num-

ber of test patterns for a given circuit and fault

Test pattern generation is one of most difficult set. Although many deterministic algorithms
problems encountered in automating the and heuristics have been proposed to solve the

design of logic circuits. The goal is to obtain the problem'™*, it is still highly complex and time

* BFoloistn A28 - AR BAXERA5Y : 984 69)

(687)

112 SEM RS, $£224 B5%, 1998

consuming. To cope with the complexity of the
problem, we need new approaches to augment
the existing techniques.

In this paper, we first define the problem of
test pattern improvement as a restricted sub-
problem of the test pattern generation, and
then propose a new approach to the problem by
use of a genetic algorithm. The test pattern
improvement problem is to maximize the fault
coverage with a fixed number of test patterns for
a given circuit and fault set. Improving the fault
coverage with the fixed number of test patterns
is a very useful and plausible approach under
some practical situations, because the testing
time of a circuit is in proportion to the number
of test patterns. That is, if the permitted time to
be used for testing a large number of devices is
not enough, we must restrict the number of test
patterns in order to complete all of the tests. In
addition, the fault coverage must be maximized
to increase the test patterns’ ability distin-
guishing whether each tested device is good or
not. The size of search space for the test pat-
tern improvement problem is 4» Ck when the
number of primary inputs of a given circuit is n
and the number of test patterns is k. Further-
more, the search space is discontinuous, with
good test patterns adjacent to bad ones, so tra-
ditional methods for local improvement cannot
be relied upon to find globally competitive solu-
tions. Some encouraging results obtained from
similar problems motivate us to employ a
genetic algorithm for the test pattern improve-
ment problem.

Genetic algorithms are search procedures
based on the mechanics of natural selection
and genetics. They have been widely used in
several applications and accepted as the meth-
ods for solving difficult optimization problems.
We briefly review some terminologies and

structures related to the genetic algorithms.

Genetic algorithms work with a population of
individuals, each of which represents a candi-
date solution of the given problem. For each
individual in the population, a measure of its
quality, called fitness, is calculated. Pairs of the
individuals are selected from the population
based on the fitness to become parents. Then,
reproduction occurs between the selected pairs
of individuals to produce new population. Some
genetic operators such as crossover and muta-
tion can be used in this phase. The newly creat-
ed population becomes the next generation,
and the above process is repeated® ™.

An important feature of our genetic algo-
rithm based approach for the test pattern
improvement problem is that the solution does
not rely on the details of a given circuit. There-
fore, the approach can be used for various
kinds of logic circuits and fault models. We pre-
sent some details on the concept and imple-
mentation of the genetic approach to the test
pattern improvement problem. Results from

some experiments are also discussed.

2. Test Pattern Improvement using
a Genetic Algorithm

In this section, we describe in detail the
genetic algorithm based approach to the prob-
lem of test pattern improvement. To clarify the
discussion, some of the terms used in this
paper are reviewed as follows. A test pattern is
a string of n logic values (0 or 1) that are
applied to the n corresponding primary inputs
of a circuit at the same time. A test set is a set
of test patterns applied to a circuit one by one
to detect faults in the circuit. The fault cover-
age of test patterns (test set) is the ratio of
faults detected by the test patterns to the total
number of possible faults in a circuit.

The following shows the outline of the genetic

(688)

Fault Coverage Improvement of Test Patterns for Combinational Circuit using a Genetic Algorithm 113

algorithm based test pattern improvement,
called GA - TPI. It follows the core structure of

genetic algorithms.

[GA - TPI: Genetic algorithm based test

pattern improvement]

Step 1 (Initialization): Initialize genetic param-
eter values such as crossover probabili-
ty P. and mutation probability P». Ran-
domly generate an initial population of
test sets {c1, c2, -+, cp} where the p is a
population size.

Step 2 (Evaluation): Calculate the fault cover-
age of each test set ci in the current
population through a fault simulation.

Step 3 (Selection): Select pairs of test sets from
the current population.

Step 4 (Crossover): Apply crossover operator
with the probability P to each of the
selected pairs in Step 3 to generate p— 1
test sets.

Step 5 (Mutation): Apply mutation operator
with the probability Pm to each of the
generated p — 1 test sets in Step 4.

Step 6 (Elitist): Add the best test set in the pre-
vious population to the current popula-
tion.

Step 7 (Termination test): If a prespecified stop-
ping criterion is satisfied, stop the algo-
rithm. Otherwise return to Step 2.

Although the genetic algorithm provides a
very general search mechanism for a wide
range of applications, the effectiveness of the
overall algorithm depends partially on the
characteristics of the given problem. Therefore,
the genetic algorithm needs to be specialized
for the problem of test pattern improvement.
The key factor in enabling the genetic algo-
rithm to solve the problem efficiently is an
appropriate representation of each individual

on which genetic operators manipulate. For the

test pattern improvement problem, an individ-
ual should be a test set which is a set of test
patterns. That is, if we denote a test pattern as
vi, then an individual consisting of k& test pat-
terns is represented as vive:--vk which is actu-
ally coded in the form of binary string as a
whole. The string length of the individual is
primary_ input * k, because the length of each
test pattern is the same as the number of pri-
mary inputs for a given circuit. Each genera-
tion is a population of the individuals {c1, c2, -+,
cp), where ¢ is an individual and p is the size of
the population.

The next requirement for the genetic algo-
rithm is a means of measuring the quality of
each individual in the population. We use the
fault coverage of each individual as its measure
of fitness. The fault coverage is obtained
through a fault simulation which applies the
test patterns represented in the individual to
the target circuit. Also, we adopt the fitness scal-
ing technique, such as linear scaling, to prevent
premature convergence at early generations and
randomness at later generations. Based on
their scaled fitness, parent individuals are
selected by use of the biased roulette wheel
selection mechanism in which the size of each
slot is proportional to its measure of fitness.
Offspring are created by mating and applying
genetic operators to these parents. With our
representation, defining these genetic opera-
tors is not a difficult task. The genetic opera-
tors employed in this paper are crossover and
mutation. Two — points crossover is used
because it offers more genetic diversity than
one - point crossover and preserves more
schemata than multiple - points crossover. The
standard mutation operator is employed
throughout the search. Another useful mecha-
nism we adopt is elizism in which the best indi-

vidual of the previous generation survives in

(689)

114 SEMPAHRMEETE, $£2248 H5M,, 1998

Test patterns
Genetic | P8 [Pault Circuit
Algorithm j«@——— | Simulation <« Description

fault coverage

Fig. 1 Conceptual view of GA - TPI

the next generation.

The conceptual view of GA - TPI is shown in
Fig. 1. In the figure, the genetic algorithm and
the fault simulation are the core of GA - TPI.
The genetic algorithm creates test patterns rep-
resented by an individual through several genet-
ic mechanisms, and the fault simulation evalu-
ates them for the given circuit and fault model.
The main advantage of separating the genetic
algorithm from the fault simulation is that the
genetic algorithm can improve the quality of test
patterns with respect to their fault coverage
without knowledge of the details of the circuits.
That is, the genetic algorithm needs only the
fault coverage of each individual represented
by a binary string. Therefore, the genetic algo-
rithm can be used to improve test patterns for
various type of circuits and fault models,
because its performance does not depend on the
given circuit and fault model. We concentrated
only on the stuck — at fault model of combina-
tional circuits in the current experiment.

3. Experimental Results and
Discussions

We constructed an experimental environ-
ment of the GA — TPI to evaluate the feasibility
of the genetic approach to the test pattern
improvement problem. The fault simulation
was conducted by the fault simulator, fsim. The
test circuits used in our experiments are the
ISCAS’'85 benchmark circuits® whose charac-
teristics are depicted in Table 1.

The experiments were conducted as follows.
In the first set of experiments on the C432, one
of the benchmark circuits, we tried to find the

Table 1. Characteristics of test circuits

Circuit | Primary | Primary . Interior
Name | Inputs | Outputs Lines Gates Faults
C432 36 7 432 153 524
C499 41 32 499 170 758
C880 60 26 880 357 942
C1355 41 32 1355 514 1574
C1908 33 25 1908 855 1879
C2670 233 140 2670 1129 2747
C3540 50 22 3540 1647 3428
C5315 178 123 5315 2184 5350
C6288 32 32 6288 2384 7744
C7552 207 108 7552 3405 7550

best parameter values affecting the perfor-
mance of the genetic algorithm. The values of
parameters, such as crossover rate and muta-
tion rate, were varied and then the fault cover-
ages obtained from each distinct set of parame-
ter values were compared. These preliminary
experiments provided that no parameter has a
noticeable effect on the fault coverage. The
variance was less than 3%, which means the
performance of GA — TPI is less sensitive to the
particular parameter settings. The best parame-
ter values were 0.7 for the crossover rate, 0.008
for the mutation rate, and 6.0 for the scaling fac-
tor. Using these parameter values, we experi-
mented on all of the benchmark circuits. The
number of test patterns (k) contained in each
individual was 10. It means that we tried to
maximize the fault coverage with 10 test pat-
terns. The population size (p) was 10, and the
initial population was created randomly.

The fault coverages obtained by GA - TPI
with two different sets of parameter values at
generation 100 are depicted in Table 2. We also
compared them against the fault coverages of
randomly - generated test patterns and the
highest fault coverages obtained by using the
deterministic algorithm, atalanta. As the table
shows, GA - TPI improves the fault coverages
about 5%~20% compared to those of initial

(690)

Fault Coverage Improvement of Test Patterns for Combinational Circuit using a Genetic Algorithm 115

Table 2. Comparisons of fault coverages

Fault Coverage (%)
| (number of test patterns : 10)
Circuit | ca-1P1] ca-TRI
Name Random Deterministic crossover: 0.9 |crossover: 0.7
(atalanta) mutation: 0.016 mutation: 0.008

C432| 53.6 64.7 73.3 74.2

C499 | 79.7 86.5 86.5 86.9

C880 | 694 75.2 83.4 84.3
C1355; 68.0 79.3 81.7 82.0
C1908 | 63.2 714 75.7 76.3
C2670 | 60.1 65.9 69.7 69.7
C3540 | 53.8 54.3 62.5 62.8
C5315| 60.8 66.4 73.1 73.7
C6288 | 92.7 97.6 98.1 97.7
C7552 | 629 67.1 72.5 72.6

.+w

- O

—~— ()

- CI¥)
- Cl98
—o— B0
-8-CHD
—— 1
~o— (B
- CIER)|

fault coverage (%)

D+ttt
0 1020 0O 0D D IO
generafion

(a) crossover rate : 0.9, mutation rate : 0.016

-t

- 010
D
- CldH
—*— Ci98
-o— CXBN)
&G
~— Y
-o- (BXY
~2— C75)

fault coverage (%)

SR TSR S U SN |
+—t— t g +—

DAt
0 102 3 L DO NV H D O
generation

(b) crossover rate : 0.7, mutation rate : 0.008
Fig. 2 Improvement of fault coverages

random test patterns, and all the results are
better than the deterministic algorithm. Fig. 2
presents the detailed improvement of fault cov-

erages as the generation increases. As shown
in the figure, GA ~ TPI improves the fault cov-
erages efficiently within a few generations. We
can also clarify that the performance of GA -
TPI is less sensitive to the particular parame-
ter settings.

Although the current implementation of GA -
TPI works well on the test pattern improvement
application, the performance can be further
improved in several ways. First, the repairing
procedure or more special genetic operators,
such as inversion and shuffle crossover, may be
used to make the search more efficient. These
can also overcome the limitations of binary
string representation of candidate solutions for
combinatorial optimization problems such as the
test pattern improvement of this paper. Second-
ly, although genetic algorithms can escape from
local optima easily, there is a possibility that it
cannot exploit the global optimum near the cur-
rent point for possible improvement. To over-
come this phenomenon, we need other tech-
niques, such as a hybrid algorithm with hill -
climbing. Thirdly, the adaptive change of param-
eter values based on the progress of the algo-
rithm may give better performance. A good
example of this paradigm is the temperature in
the simulated annealing.

4. Conclusion

The problem of test pattern generation is
highly complex and time - consuming. To cope
with the complexity of the problem, we first
defined a restricted subproblem, test pattern
improvement, which maximizes the fault cover-
age with a fixed number of test patterns for a
given circuit and fault set. We then adapted a
genetic algorithm as the conceptual basis to
solve the test pattern improvement problem.
The genetic algorithm based approach is shown

(691)

116 mEWAHMEeE, $224 H5% 1998

to be a feasible and useful technique. Experi-
mental results show that the fault coverages
achieved by the genetic algorithm based
approach is higher than those obtained by con-
ventional approaches.

Further study needs to be done toward the fol-
lowing directions. First, our approach can be
applied to sequential circuits. We expect to
obtain similar results in sequential circuits by
virtue of the robustness of genetic algorithm
itself. Secondly, a parallelization of our approach
on a multi - processor computer can obtain
faster execution and better performance.

Acknowledgement

The author wishes to thank Professor D. S.
Ha at the Virginia Polytechnic & State Univer-
sity for providing the fault simulator, fsim, and
the test pattern generator, atalanta.

References

1) H. Fujiwara and S. Toida, “The complexity of
fault detection problems for combinational logic
circuits,” IEEE Trans. on Computers, vol. C - 31,
no. 6, pp. 555 - 560, June 1982.

2) F. Brglez and H. Fujiwara, “A neutral netlist of
10 combinational benchmark circuits and a target
translator in Fortran,” Proc. Int. IEEE Symp. on
Circuits and Systems, June 1985.

3) R. L. Pickholtz, Digital Systems Testing and
Testable Design, Computer Science Press, 1990.

4) J. D. Calhoun and F. Brglez, “A framework and
method for hierarchical test generation,” IEEE
Trans. on Computer — Aided Design, vol. 11, no.
1, pp. 45 - 67, Jan. 1992,

5) D. E. Goldberg, Genetic algorithms in Search,
Optimization, and Machine Learning, Addison —
Wesley, 1989.

6) L. Davis, ed., Handbook of Genetic algorithms,
Van Nostrand Reinhold, 1991.

7) M. Srinivas, “Genetic algorithms: a survey,”

IEEE Computer, pp. 17— 26, June 1994.

8) T. Back, ed., “Genetic algorithms versus experi-
mental methods: a case study,” Proceeding of the
Seventh International Conference on Genetic
Algorithm, Morgan Maufmann, 1997.

SR

19634 3344 1995\ AMECHEtn Znl
B MABED &Y. 19874 SREOIE
B OH7IS HXISED FRA(AAD. 199514
SCHEFH Fed(24AD. 19874 - 19904 LG
RIEH(F) 73, 199749 - Hx| ESsl
Yty x5} - YESAT AL o
afsis|al

(692)

