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Determination of Ceramide-Induced Apoptotic Cell Death
in Mouse Granulosa Cell Cultured In Vitro
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ABSTRACT : In mammalian ovary, major portion (>>99%) of ovarian follicles undergo atresia. Recent studies have shown that
this phcnomenon is mediated via GC apoptosis. Ceramide, a product of sphingomyelin hydrolysis, has been proposed as a novel
lipid second messenger with specific roles in mediating antiproliferative responses including apoptosis and cell cycle arrest. In the
present study, we have examined the effect of ceramide on apoptotic cell death of GC in vitro. GCs were harvested by squeezing the
antral follicles from the immature mice (3~4 weeks) and cultured in MEM medium with 10% fetal bovine serum. The cells were
treated with various concentrations of ceramide (0 to 50 M) and cultured up to 24 h. Cell death was determined by MTT cell vi-
ability assay and apoptosis was examined by acridinc orange staining, in situ 3-end labeling (TUNEL), and flow cylometry.
Ceramide treatment induced apoptotic cell death of GC in a time- and a dose-dependent manner. Results of flow cytometric analysis
showed that ceramide-induced cell death was mostly confined to the GO/G1 cells. These results provide an evidence for ceramide as a
lipid second messenger of apoptosis in mouse GC.
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many biological processes, especially in ovarian germ cell

INTRODUCTION endowment and depletion (Tilly & Tilly, 1991).

Apoptosis and necrosis constitute two distinct forms of
cell death. Necrosis includes membrane disruption, hypoxia,
membrane collapse, cell swelling and’ rupture in pathologic
tissue. In contrast, programmed cell death (PCD) or apop-
tosis is a process by which cells die in response to specific
physiological and toxicological signals. This genetically pro-

grammed form of cellular suicide is intimately involved in
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In mammalian ovary, the major portion of ovarian
follicles is not ovulated but removed through the process of
follicular atresia. However, the exact mechanisms have not
been elucidated yet. Recent studies have shown that this
phenomenon occurs by apoptosis of granulosa cells (Billig
et al., 1994; Yang et al., 1997).

Intensive investigation, particularly in the past decade,
has firmly established the role of membrane glycerolipids in
transmembrane signal transduction. The binding of growth

factor to cell-surface receptors initiates the multiple casca-
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des of intracellular signals that culminate in DNA synthesis
and cell division (Ulrich & Schlessinger, 1990). Some of the
signaling networks have been studied intensively, such as
the pathways that utilize diacylglycerol (DAG), inositol 1,4,
5-triphosphate (InsP;)* and other glycerolipid metabolites
(Nishizuka, 1992; Berridge, 1993). However, the sphingoli-
pids have only recently begun to be appreciated. Recent dis-
coveries have revealed that these sphingolipids may play im-
portant roles in cell growth regulation. These include cera-
mides (Hannun, 1994; Kolensnick & Golde, 1994), sphingo-
sine (Heller & Kronke, 1994), sphingosine 1-phosphate
(Mattie et al, 1994) and sphingosine phosphorylcholine
(Desai et al., 1993).

Especially, ceramide, an immediate product of sphingo-
myelin hydrolysis, is known as a mediator of apoptosis and
stimulation of cells with nerve growth factor (NGF) or
tumor necrosis factor « (INFa) activates a sphingomyel-
inase which generates an intracellular ceramide as a me-
diator of apoptosis. As with other agonist-induced PCD, ef-
fects of ceramide on DNA fragmentation were inhibited by
zinc, suggesting an involvement of a Ca?*-dependent endo-
nuclease. Additional studies suggest that ceramide may
also participate in apoptosis ‘induced by dexamethasone
(Quintans et al., 1994), the Fas ligand or serum withdrawal
(Venable et al.,, 1994; Tepper et al, 1995). All of these
agents are associated with significant changes in the intra-
cellular levels of ceramide. Thus, data are beginning to im-
plicate ceramide as a generalized mediator of apoptosis.

Recent study revealed that TNFa or its second messen-
ger, ceramide, stimulates apoptosis of early antral follicles
in culture and suggested potential role for TNFa as an
intraovarian regulator of follicle atresia by acting through
the ceramide signaling pathway (Kaipia et al., 1996). Based
upon these results, ceramide is assumed to be a mediator of
apoptosis in the follicular atresia. Therefore, we investigated
the possibilities that ceramide could induce the apoptotic

changes in granulosa cells cultured in vitro.
MATERIALS AND METHODS

1. Animals
Immature (21-day-old) female mice (ICR strain) were
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purchased from Animal Breeding Center in Seoul National
University. Animals were housed in a temperature-con-
trolled room with a 14 h light-10 h dark cycle and allowed
free access to food and water. The animals were treated
with single i. p. injection of 5 IU PMSG (Sigma) in 0.2 ml
PBS, pH 7.4, and ovaries were removed 24 h later and used

for all experiments.

2. Granulosa cell cuitures

Granulosa cells (GC) were collected in sterile MEM cul-
ture medium by a nonenzymatic needle (26-gauge) puncture
technique. Cells were washed twice by centrifugation (250X
g 3 min) and viability was determined by trypan blue ex-
clusion test. GC were inoculated into 60-mm culture dishes
(Falcon) at a density of 1X10¢ cells/dish and cultured in
3ml MEM medium supplemented with 2 mM L-glutamine,
100 U/ml penicillin, and 100 xg/ml streptomycin sulfate and
fetal bovine serum (Gibco) at 37C in a humidified 95%
air-5% CO; atmosphere. For cell viability test, cell were
plated in 4-well multidishes (Nunc) at a density of 2Xx 105
cell/dish.

For the experiment to evaluate the effect of ceramide on
apoptotic cell death, GCs were plated overnight and adher-
ent cells were washed twice and cultured with 0 (ethanol ve-
hicle), 12.5, 25 or 50 M C6-ceramide for up to 24 h.

All experimental agents were freshly diluted in ethanol to
give final concentrations of less than 0.01% diluent in the

working solutions

3. MTT cell viability assay

Cell viability was determined by a modification of the
MTT (3-4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bro-
mide; Sigma) reduction method (Mossman, 1983) and
expressed as a percentage of the corresponding control.
Briefly, at the end of the culture, GC was carefully washed
and incubated with 500 gl MTT (0.05% in MEM) solution
for another 3 h at 37C. After MTT was removed, for-
mazan crystals were solubilized in 200 ul DMSO (dimethy!
sulfoxide; Sigma). The absorbance of aliquots from each
well was measured using ELISA reader (EL340, BIO-TEK)
at wavelength 570 nm and a reference wavelength of 620

nm.
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4. Fluorescent staining of apoptotic nuclei

For morphological evaluation of the degree of apoptosis,
GC was stained with acridine orange and visualized by flu-
orescence microscopy (Diaphot 300) (Yang et al., 1997).
After culture, GC was treated with mild hypertonic solution
(distilled water:PBS = 1:1) for 10 min, and prefixed in 50%
solution of fixative (methanol:acetic acid=3:1) for 5 min.
After fixation, the cells were stained with acridine orange
(1mg/ml) for 10 min, and then observed with flyorescence

microscope.

5. In situ detection for GC apoptosis

After culture, the cells were harvested by non-enzymatic
cell dissociation solution (Sigma) and centrifuged onto the
slides. The cells were then subjected to 3’-end labeling of
free DNA ends by in situ TUNEL (Terminal deoxynucleo-
tidyl transferase-mediated dUTP-digoxigenin nick end-labe-
ling) method to identify the specific cells undergoing DNA
fragmentation. In situ apoptosis detection was performed
using the ApopTag kit according to the protocol recom-
mended by the manufacturer (Oncor).

6. Flow cytometric analysis

GC was prepared for flow cytometry as previously de-
scribed for thymocyte (Telford et al., 1991), After culture,
the cells were harvested, centrifuged at 400X g for 5 min,
and chilled to 4°C. And then, they were fixed at a concen-
tration of 1-2X 106 cells/ml in 80% ethanol at 4°C for 30
min. The fixed cells were resuspended by gentle vortexing at
room temperature in 1 ml of propidium iodide (PI, 50
pg/ml; Sigma) in modified HBSS (Hank’s balanced salt sol-
ution; pH 7.4, Sigma) containing 0.1% Trition X-100
(Sigma), 0.1 mM EDTA (Na),, and 50 ug/ml (50 U/mg) of
RNase (Boehringer-Manheim). The percentage of GC with
degraded DNA was determined using a flow cytometer
(Hialeah). PI nuclear stain was exited through use of the
488 nm line of an argon laser. Cell cycle histograms were
obtained from minimum of 10,000 cells. The profile I his-
togram analysis option was used to set up analysis cursor
for data acquisition in the Ao (subpopulation of cells with
degraded DNA and with lower DNA fluorescence than
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Go/Gi cells), Go/Gy, S, and Go/M regions of the DNA his-

fogram.

7. Data analysis

Each experiment was repeated at least three times. Quan-
titative data represent the mean+S.D. of at least five cul-
tures expressed as percent change as compared with control
samples incubated without ceramide treatment. statistical
differences were assessed by ANOVA followed by student’s
t test, and P<0.05 was considered to be significant.

RESULTS

1. Effects of ceramide on cell viability

To test whether ceramide induces a cell death in GC,
various concentrations of ceramide were treated for 24 h.
Fig. 1 depicts that GC viability decreased in a dose-depen-
dent manner. Cell viability decreased significantly from
17% (12.5 uM) to 85% (50 uM) compared to control.

2. Characterization of ceramide-induced cell death as
an apoptosis
In order to determine whether ceramide-mediated death

of GC occurred by apoptosis, cells incubated with various
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Fig. 1. Cytotoxic effect of ceramide on mouse granulosa
cells.
Cells were cultured for 24 h with ethanol vehicle (control)
or various concentrations of ceramide, as indicated. Cell vi-
ability was determined by the MTT assay and expressed as
a percentage of the values of controls. Data are the mean *
S.D. of 5 different determinations, * p<0,01 versus control,



Fig. 2. Fluorescence in the apopt-

otic nuclei of granulosa cells treated
with various concentrations of ceram-
ide.
Fluorescent staining of cells with acri-
dine orange was performed on the cul-
tured dishes after fixing with meth-
anol: acetic acid. Arrows indicate typi-
cal pyknotic nuclei and white arrow
-head points to apoptotic nuclei, (A,
control; B, 12.5 uM; C, 25 .M D, 50
M). Magnification, X 400.
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Fig. 3. In situ detection of DNA

fragmentation of cultured granulosa
cells using TUNEL method.
Cells were treated with ethanol ve-
hicle(control, A) or ceramide(12.5 M,
B; 25 /M, C; 50 M, D) for 24h and
harvested by non-enzymatic technique.
The cells were centrifuged onto slide
and stained with in situ apoptosis detec-
tion kit. Arrows show apoptotic cells.
Magnifcation, X 400.
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concentration of ceramide were stained with acridine orange
and analyzed by fluorescence microscopy (Fig. 2). In con-
trol culture (ethanol vehicle), nearly all cells could be
observed as normal that there was not any apoptotic nu-
cleus under fluorescence optics (Fig. 2A). On the contrary,
cells treated with ceramide revealed a lot of apoptotic nuclei
in a dose-dependent manner (Figs. 2B-2D).

The TUNEL technique was used to vizulize DNA frag-
mentation both in control and ceramide-treated cultures in
situ. The nuclei of healthy GC were not labeled and showed
the oval shape (Fig. 3A), while the nuclei in which DNA
breakdown has occurred were darkly stained and irregularly
shaped. When cells treated with ceramide were examined,
intense 3’-end labeling was observed and the percentages of
apoptotic bodies increased in a dose-dependent manner
(Figs. 3B-3D).

3. Cell cycle analysis with flow cytometry of granulosa cell

Flow cytometric cell cycle histograms of Pl-stained GC
are shown in Fig. 4. In control the percentage of GC in A
phase, which represents characteristic of apoptotic cell, was
4.6% of total cells. However, when the cells were treated
with various concentration of ceramide including 12.5 uM,
25 uM or 50 uM, the percentage of cells in Ay phase (Re-
gion 1) were 20.6%, 44% and 59%, respectively. Further-
more, the number of cells in Go/G; phase (Region 2) de-
creased significantly in a dose-dependent manner and simil-
ary the number of cells in Go/M (Region 4) decreased,

which, however, was not statistically significant.
DISCUSSION

The present study demonstrates that ceramide induces
cell death of mouse GC cultured in vitroe (Fig. 1) and that
the cell death occurred by apoptosis (Fig. 2, 3, 4).

Previous studies have suggested that ceramide could be a
major intracellular lipid mediating the cytotoxicity in re-
sponse to a number of extracellular agents and insults in-
cluding Fas agonist, TNFa (Obeid et al., 1993), radiation
(Haimovitz-Friedman et al., 1994), and chemotherapeutic
agents (Strum et al.,, 1994). Furthermore, in cultured rat

granulosa cells, TNFa treatment was recently shown to in-
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crease ceramide levels, indicating that the TNFa signaling
in GC was coupled to a sphingomyelin pathway (Santana et
al., 1995).

In the present study, we evaluated the cytotoxicity of
ceramide using MTT cell viability assay method, and the
assay, which measures mitochondrial respiratory function,
could detect the onset of cell death earlier than dye-ex-
clusion-based method. From the results of our experiments,
it was shown that ceramide strongly induced cell death and
increasing concentrations of ceramide resulted in the increa-
sed cytotoxicity as expected.

Fluorescence staining of nuclei with acridine orange in
dying cells obviously provided an evidence of apoptosis.
Such analysis to detect the apoplotic nuclei has already
been widely used in various cell types (Arends et al., 1990)
including rat GC (Luciano et al, 1994). In our results,
number of apoptotic fragmented nuclei increased in pro-
portion to concentrations of ceramide, while, in control
(ethanol vehicle), nearly all GC appeared to be normal as
they exhibited healthy oval nucleus without signs of nuclear
fragmentation. The in situ TUNEL method was also used
to vizulize DNA fragmentation. Detection of apoptotic cells
in situ with DNA 3’-end labeling using terminal transferase
enzyme has been known as a powerful tool for the study of
apoptosis (Chun et al.,, 1994). Nuclei of healthy cells were
not labeled and were oval shape, while nuclei of which
DNA breakdown has occurred was darkly stained and ir-
regularly shaped. No sign of apoptotic signal was detected
in control GC cultured for 24 h (Fig. 3A). In contrast,
when GCs were treated with ceramide, an incresing level of
apoptotic cells and apoptotic bodies were detected in a
dose-dependent manner.

The phase of the cell cycle when cells are most sensitive
to apoptosis may provide an important imformation to un-
derstand the mechanism of apoptosis in various cell types.
It has been reported that a fungal cytotoxin, camptothecin
causes immediate degeneration of nuclear DNA of HL-60
cells only in the S and Go/M phases of the cell cycle with
accumulation of apoptotic cells (Del Bino et al., 1990). In
contrast, apoptosis induced by corticoid in rat thymocytes
was selective to cells in the Go/G, phase (Telford et al.,
1991; Bruno et al., 1992). Recent results using porcine GC
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Fig. 4. DNA Histograms of DNA contents in cultured granulosa cells treated with various concentrations of ceramide

using flow cytometry.

Cells were treated with ethanol vehicle (A), or ceramide (12.5 pM, B; 25 uM, C; 50 uM, D) for 24 h and harvested by non-en-
zymatic cell dissociation. The percentage of granulosa cells having sub-diploid amount of DNA (%A, cells) was determined by
DNA fluorescence flow cytometry of Pl-stained nuclei of ethanol-fixed cells. Region 1 represents the portion of apoptotic
granulosa cell population having sub-diploid levels of DNA (Ap). Region 2, 3, and 4 represent the Go /Gy, S, and G2 /M stages

of the cell cycle, respectively.

also indicated that DNA degeneration in GC was largely
specific to Go/G1 phase (Guthrie et al., 1994). In the present
study, the percentage of cells in S and G,/M phase decrea-
sed in a dose-dependent manner and the percentage of cells
in° Go/G; phase was abruptly decreased and was inversely
related to that of Aq. This result strongly provide an evi-
dence that ceramide induced-apoptosis in GC was largely
restricted to Go/G, phase.

In summadry, ceramide, a product of sphingomyelin hy-
drolysis, induced apoptotic cell death in mouse GC cultured
in vitro and ceramide-induced cell death was mostly restric-
ted to Go/G phase. There may be many gaps in under-
standing the regulatory mechanisms of hormone-responsive
sphingomyelinase and downstream signaling pathways in-

volved in mediating the actions of ceramide. Further inves-

tigation of the pathway will give an insight to the under-

standing of ovarian physiology including follicular atresia.
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