6FDA-p-TeMPD 폴리이미드 비대칭막 제조에서 용매와 비용매가 막구조에 미치는 영향

The Effects of Solvent and Nonsolvent on Asymmetric Membrane Structure of 6FDA-p-TeMPD Polyimide

  • 박노춘 (순천제일대학 산업안전과) ;
  • 김건중 (인하대학교 화학공학과) ;
  • 남세종 (인하대학교 화학공학과)
  • 발행 : 1998.09.01

초록

폴리이미드(6FDA-p-TeMPD) 비대칭막을 습식 상분리법으로 제조하는데 있어서 그 구조에 미치는 용매 (DMAc, NMP, 1,4-dioxane)와 비용매($H_2O$, Methanol, n-hexane)의 영향을 고찰하였다. 고분자/용매/비용매 분리 속도를 예측함으로써 생성된 비대칭막의 구조를 해석하였다. 용해도 곡선이 용매-고분자 축에 가깝고, 응결값이 작으며, 광투과도가 즉시 감소하고, 용해도 계수차가 $\Delta \delta_{S-NS} > \Delta \delta_{P-NS} > \Delta \delta_{P-S}$ 순이면 생성막은 고분자 결절의 불연속 결집속에 finger-like pore가 형성되었다. 용해도 곡선이 용매-고분자 축에서 멀고, 응결값이 크며, 상분리 시간이 길고, 용해도 계수차 $\Delta \delta_{i-j}$$\Delta \delta_{P-NS} >(\Delta \delta_{S-NS} < > \Delta \delta_{P-S})$ 일때, 생성되는 막은 미소 고분자 결절구가 치밀하게 응집된 표피가 있으며, 고분자 연속상 스폰지층에 macropore가 발달되었다. 용해도 곡선이 용매-고분자 축으로부터 멀리 떨어지고, 응결값이 대단히 크며, 상분리 시간이 길고, 용해도 계수차 $\Delta \delta_{i-j}$$\Delta \delta_{S-NS} > (\Delta \delta_{P-NS}$\lessgtr$)\Delta \delta_{P-S}$인 경우는 고분자 미소 결절의 두터운 응집층과 다음에 성근 결절응집층이 나타났다.

The effects of solvents (DMAc, NMP, 1,4-dioxane) and nonsolvents ($H_2O$, Methanol, n-hexane) on the morphology of 6FDA-p-TeMPD polyimide membrane, prepared by the wet phase inversion method, were studied. In the polymer/solvent/nonsolvent ternary system, the binodal curve, the coagulation value and the relative light transmission were measured, and the solubility parameter difference was calculated. The onset state and rate of liquid-liquid alemixing were predicted and the morphology of membrane was analyzed. It is found that the finger-like pores are formed within discontinuous polymer nodules when the binoclal curve is close to the polymer-solvent (P-S) axis, the coagulation value is small, the reduction of light transmission is easy to occur and the order of solubility parameter difference ($\Delta \delta_{i-j}$) is $\Delta \delta_{S-NS} > \Delta \delta_{P-NS} > \Delta \delta_{P-S}$. The dense skin with small nodules and the sponge type sublayer with macrovoid are formed in the case that the binodal curve is distant from the P-S axis, the onset time of liquid-liquid demixing is long and the order of $\Delta \delta_{i-j}$ is $\Delta \delta_{P-NS} >(\Delta \delta_{S-NS} < > \Delta \delta_{P-S})$. The thick layer of fine nodule coagulation and loosely grown sublayer of nodules appear when the binodal curve is distant from the P-S axis, the onset time of liquid-liquid demixing is very long and the order of $\Delta \delta_{i-j}$$\Delta \delta_{S-NS} > (\Delta \delta_{P-NS}$\lessgtr$ > (\Delta \delta_{P-NS} < >)\Delta \delta_{P-S}$ ).

키워드

참고문헌

  1. J. Memb. Sci. v.83 W. J. Koros;G. K. Fleming
  2. J. Memb. Sci. S. A. Stern
  3. Adv. Chem. Ser. S. Lobe;S. Sourirajan
  4. Desalination v.79 K. Kimmerle;H. Strathmann
  5. J. Memb. Sci. v.123 A. Yamasaki;R.K. Tyagi;A.E. Fouda;T. Matsuura;K. Jonasson
  6. J. Memb. Sci. v.109 J. M. Cheng;D. M. Wang;F. C. Lin;J. Y. Lai
  7. J. Memb. Sci. v.118 J. Y. Lai;F. C. Lin;C. C. Wang;D. M. Wang
  8. Synthtic Polymeric Membranes R. E. Kesting
  9. ACS Symp. Ser. Materrials Science of Synthetic Membranes D. Loloyd(Ed.)
  10. Recent Progr. Surface Sci. v.3 R. Schultz;S. Asunmaa
  11. J. Appl. Polym. Sci. v.39 A. K. Fritzsche;B. L. Armbruster;P. B. Fraundorf;C. J. Pellegrin
  12. Macromolecules v.6 M. Panaar;H. Hoehn;R. Hebert
  13. J. Sci. Dyes Colour. v.86 G. A. Byrne;K. C. Brown
  14. J. Appl. Polym. Sci. v.40 no.9;10 R. E. Kesting;A. K. Fritsche;M. K. Murphy;C. A. Cruse;A. C. Handermann;R. F. Malon;M. D. Moore
  15. J. Memb. Sci. v.75 T. S. Chung;E. R. Kafchinski;P. Foley
  16. U. S. Patent 4 v.871 R. E. Kesting;A. K. Frizsche;M. K. Murphy;A. C. Handermann;C. A. Cruse;R. F. Malon
  17. Gas Sep. Purif. v.3 A. K. Fritzsche;M. K. Nurphy;C. A. Cruse;R. F. Malon;R. E. Kesting
  18. J. Appl. Polym. Sci. v.40 R. E. Kesting;A. K. Fritzsche;A. Cruse;M. K. Murphy;A. C. Handermann;R. F. Malon;M. D. Moore
  19. U.S. Patent 4,902,422 I. Pinnau;W. J. Koros
  20. Proceedings of SRP conference W. J. Koros;I. Pinnau;S. C. Pesek
  21. Desalination v.16 H. Strathmann;K. Kock;P. Amar;R. W. Baker
  22. Gas Sep. Purif. v.4 P. S. Puri
  23. Desalination v.80 S. Doi;K. Hamanaka
  24. U. S. Patent 4,955,993 E. S. Sanders. Jr.;J. A. Jensvold;D. O. Clark;F. L. Coan;H. N. Beck;W. E. Mickols;P. K. Kim;W. Admassu
  25. Desalination v.36 C. Friedrich;A. Driancourt;C. Noel;L. Monnerie
  26. Handbook of Separation Process Technology Separation of gaseous mixtures using polymer membranes W. J. Koros;R. T. Chern;R. Rousseau(Ed.)
  27. J. Memb. Sci. v.110 F. C. Lin;D. M. Wang;J. Y. Lai
  28. J. Memb. Sci. v.59 T. H. Yung;L. W. Chen
  29. J. Memb. Sci. v.59 T. H. Young;L. W. Chen
  30. Macromolecules v.15 Frank W. Altena;C. A. Smolders
  31. J. Memb. Sci. v.112 S. A. MeKclvey;W. J. Koros
  32. Macromolecules v.25 no.12 L. P. Cheng;C. C. Gryte
  33. J. Appl. Polym. Sci. v.21 D. M. Koenhen;M. H. V. Mulder;C. A. Smolders
  34. Desalination v.10 R. Matz
  35. Ph. D. Thesis Membrane Formation - Diffusion Induced Demixing processed in Ternary Polymeric Systems A. J. Reuvers
  36. J. Polym. Sci., Polym. Phys. Ed. v.17 C. Cohen
  37. J. Memb. Sci. v.60 Y. S. Kang;H. J. Kim;U. Y. kim
  38. J. Polym. Sci., Polym. Phys. Ed. v.29 C. S. Tsay;A. J. McHugh
  39. J. Memb. Sci. v.34 A. J. Reuves;J. W. A. Van den Berg;C. A. Smolders
  40. J. Appl. Polymer Sci. v.21 D. Peric;A. T. Bell;M. Shen
  41. Plasma Polymerization H. Yasuda
  42. J. Memb. Sci. v.87 H. Kita;T. Inada;K. Tanaka;K. Okamoto
  43. Properties of Polymers D. W. Van Krevelen
  44. J. Memb. Sci. v.113 I. M. Wienk;R. M. Boom;M. A. M. Beerlage;A. M. W. Bulte;C. A. Smolders;H. Strathmann