bt
f >
0
OF
N
|m
i
£
o

s
b

2 9
Fojd #49E BY olBH BABE FohA AE EAZ JPE B2 AL BE 4P AlD LB ANET of
£Ais Sudel de) oEotee) AuHolgFe) B&H THA AT of Bad g ved LuAFE o) YA
te 9g - :

22 2 =RdA ARk dudse FEAEYEY vu AAE Adetn Uil 22 At ded A
& L 5

Minimal Circular Strings
Kyubum Wee'- Hong-Jin Yeh'

ABSTRACT

We present a linear time algorithm for finding a lexicographically minimal circular string in a given string. The
problem was motivated by an effort to implement state transition functions in isotropic cellular automata. A naive
algorithm for the problem would require quadratic time. The proposed algorithm runs in linear time by keeping the

result of comparisons of substrings and reusing it afterwards when the same computation is needed.

1. Introeduction

We consider the problem of finding a minimal
circular string in a given string. More formally, giv-
en a string §= a,as*** a, we want to find a posi-
tion ¢ such that the circular string a@@;.
a,a1as - @;~; 1s lexicographically smaller than or
equal to any other circular string aja; ;" a@,a;as
gy for 1<j<n.

This problem was motivated by an effort to impl-
ement state transition functions of cellular automata

t 208U TG PN D ARETYY w5
THH 1989 39 HY, AARgE 198 7€ 13Y

[1L A cell in cellular automata changes its state at
the next time step based on its state and its neigh-
bors’ states at the current time step. Since cellular
autornata are isctropic, the neighbors’ directions are
irrelevant in det-ermining the next state. For exam-

ple, consider the following figure.

o
oo
o
=1
>
o

(22 1) 3H ha
(Fig. 1) rotational symmetry

Suppose that the cell at the center changes its
state from the state A into the state D at the next

TR HA8Y

[N

k
i

time step. Then there should be an entry (ACBED,
D) in the rable representing the state transition fun
ction of the celluar automata. Since CA s isotropic,
the table needs not contain both (ACBED, D) and
(ADCBE, D). Only cne of them needs to be included
in the table. if we decide to include (ACBED, D} in
the table, then neither of (ADCBE, D), (ABEDC, D),
and (AEDCB, D) needs to be included in the table.
In other words, only onc aof the cyclic shifts of the
sequence of neighbors’ states need go into the table.

Also when we simulate the behavior of the cell-
ular automata, any of the above four configurations
ACBED, ADCBE, ABEDC, and AEDCB should vield
the next state D. So which one should be the rep-
resentative of all the cvclic shifts? A natural choice
would be the one that is smallest in the lexico-
graphic ordering. In the above example, BEDC is the
smallest among CBED, BEDC, EDCB, and DCBE,

A naive algorithm would compare n different
sequences to find the smallest, where n is the leng-
th of the sequence. It is casy to see that such an
algorithm needs quadratic time in the worst case.
Here we present a linear time algorithm. Previous
research results on this problem are by Booth[2] and
by Shiloach[3]. Booth gave a linear time algorithm
by generalizing the KMP string matching algorithm
[4]. Shiloach’s algorithm finds all the minimal cir-
cular strings. Both of these are complicated algori-
thrns that are hard to understand. Our algorithm is
not more efficient than the previous algorithms, but
it uses a different approach, is simple and easy to

understand, and fairly efficient.
2. Minimal Circular String Algorithm

Let us use the notation % < ¢ when the string
is lexicographically less than the string v, and
u<y when the Stn‘ng u is lexicographically less
than or equal to the stﬁng v.

First we introduce a lemma. The lemma says

that in a string that repeats a prefix, the circularly

shifted string that starts with the second repetition
of the prefix cannot he the minimal cireular string

unless it 1s identical to the original string.

Lemma In a string # of the form u = xxiw.
where x and w are substrings, let 2 be the cir
cularly shifted string v=xwx. If uw+vu, then v

cannot be the minimal circular string.

proof Since #+w, either u<{# or v<{w. In the
case u{y, v clearly is not a minimal circular
sting. In the case wo<wu, xwx<{xxw. Hence
wx { xw by elimnating the prefix x from hoth
sides of the inequality. Then by appending the
string x to both sides, we get wxx < xwx = v.
But wxx is also a circularly shifted string of 2.
Therefore v cannot be a minimal circular string in
this case, either. []

Notation The notation Alk'm] is used 1o represent
the contiguous part of the array from Alkl to Alm],
and Alki*1 the circular string starting from the
position k and ending at the position k-1,]

Now we present an algorithm for finding a mini~
mal circular string in a given string. The algorithm
takes the input string in an array All.n] and
returns the starting position of the mimimal circular
string.

Note that the problem of finding the minimal
circular string of w is the same as the problem of
finding the minimal substring of length lwl in the
string ww. So first we double the array All.n} into
All.2n] in such a way that A{l.n] = Aln+l.2n],
Now the problem is finding the lexicographically
minimal string of length n in AlL.2n].

We use the variable j to scan the array All.2n).
The variable start is used to keep track of the
starting position of the minimal sequence in A[l3].
The variable chall is used to maintain the starting
position of the challenger string. That is, Alstart :

start~j-chadl] Alchall ¢ jl See figwe 2 For
example, ¥ All7] - 2421265249, then
star{ = 3 and chafl = 8 Here note that Alstart :
starttj chalf) - Alchall © j1 - (24 3) If there 1s no
challenger in AllY], chall is set to O The challenger
has the possibility of turning out to be smaller than

the currently minimal sequence.

rrrssssarssars]
¥ ¥ T — —
start T chall j n

start+] -chali

(2 2)
(Fig. 2

The array PlL2n] remembers the starting
position of the challenger when the champion{start)
and the challenger(chall) are compared. In more
detail, P[j] is set to chall when Alstart+j-chail] and
Alj] are compared. P is used for not having to
backtrack the scanning varble j, when the chall
enger becomes the champion and the new challenger
is looked for.

start is initialized to 1, cfall to O, and j to 2. As
the scanning variable j is incremented, start and
chall need to be adjusted. We consider the following

{ive cases:

{case 1) There was no challenger in Al1/-11

(case 2) There was a challenger in Ally-1] and
Alstart] > Aljl.

tcase 3) There was a challenger in Ally-1] and
Alstart] < Al and Alstartj-challl < Al

(case 4} There was a challenger in Ally-1] and
Alstartt < Alj] and Alstart+j-challl > Alj]

(case 5) There was a challenger in A[l;-1] and
Alstart] < Alj] and Alstart+j-chall]l = Aij)

Before considering each of the five cases, let us
mention that the algorithm sees to it that the
intervals Alstart © start+j-chail]l and Alchadl :j] never

ot

FoEE -REe JA

overlag, by resetting owfl 10 O when the two
imtervals have grown o meet. Two mtervals meet
when start+j -chall = chall, that s 2 = chall = start
i

When the two intervals meet, we know that
Alstart © start+j-chalfl - Alchall :j1 and that they
are adjacent. Hence, by the above lemma, it is safe
to give up Alchall+] as a candidate for the minimal
circular string. So resetting chall to 0 is justfied.

Now we will consider each of the five cases.

{case 1) There was no challenger in A{ly-11.

If Alstare] > Aljl, then set start to 7. H Alstare]
= Alf). then sct chall to J. 1F Alstart]l < Al7], then
there is nothing to do.]

{case 2} There was a challenger in Ally-1} and
Alstart] > Aljl.

Since Alstartl > Aljl J becomes the new starting
position. There is no challenger at the moment. [_]

{case 3) There was a challenger in Aliy-1] and
Alstart] = Alj] and Alstart+f-challl < Alfl.

Since therc was a challenger in Ally-1], we
know that Alstart @ start+j-1-challl = Alchall @ j-11.
Since Alstart+j—challl < AlF), Alstart - start+j-chall]
< Alchali : jl. Hence Alchall: jl cannot be a
chailenger. So chall is set to 0. Plj] is set to chall
Pl;1 remembers that the current challenger lost at

position /. [

icase 4) There was a challenger m Ally-1) and
Afstart! - AlJ) and Alsearr+f-challl > AlfL

Since there was a challenger in Ally-1], we
know that Alstart : start+j-1-chall] = Alchall :j-1].
Since Alstart+j-challl > Aljl, Alstart : start+j-chalf]
> Alchall
hecomes start.

© j). Hence the challenger wins and

Now who is the new challenger? The new
challenger is the first position in Alchall+1 : j] whose
value is the same as Alchall], if there is any. In

2418 SIRABME|S T =2A HEH HYBGE

order to find the position of the new challenger, we
do not have to compare each clement in Alchail+1 : j
to Alchalll. Instead we take advantage of the fact
that Alstart © start+j-1-chall] Alchati @ j-1]. We
check the value of Plstart+j-challl If Plstart+j-chall)
= 0, then it means that there was no challenger
whe'n we were scanning Alstarttj challl. Hence
there is no new challenger, either, If Plstart+/-challl
4+ () then it means that there was a challenger
when we were scanning Alstart+j-challl and that
the starting position of the challenger was DPlstart+/
-chafl]. Hence the position of the new challenger is
Plstart+j-chall] + (chaii-start). See figure 3.

Plstart+j—chall] new_chall

Voo

P IFFIIINIY TSIV IIII
N M " 3

e

start chall i n

start+j-chall

new_start

(2% 3)
(Fig. 3)

In this case, note that the scanning variable j
should not be incremented. We know that Alnew-
start © newstart+j-1-newchall] = Alnewchall . j-1}. So
we should start comparing from Alnewstart+j-new-
chall] and AL [

(case 5) There was a challenger in A[ly~1] and
Alstart] < AlJ) and Alstart+j-chaill = Aljl.

Since there was a challenger in Allj-11, we
know that Alstart @ start+j-1-chaill = Alchall :j-11.
Since Alstarttj-challl = Alj], Alstart - start+j-chali]
= Alchall : /). Hence the competition between start
and chall has not been resolved yet. So they should
he again cornpared at the next repetition of the loop
with ; incremented. The algorithm only has to
remember the starting position of the current chall-

enger by setting Pl to chail

But there is one thing to worry about @ It could
be that Alstartl = Aljl In such a case, should we
keep the position j as another challenger? Fortun-
ately, that is not necessary. The reason is as
follows : First, note that Alstart} = Aljl = Alstarts
Jj-challl. Hence the position start+j-chall must have
been a challenger bef-ore, but is not a challenger
any more. Now let us consider two cases : (i) Alstart
tj-chail - *] < Al 1 #] and (i) Alstart+j-chall : *] >
Alj #].

(case i) Alstarttj-chall *+] < Alj © #].

The position stert+j~chall was a challenger befare,
but is not any more, which means it has been
determined that Alstart+j-chall 1] cannot be a
minimal circular string. But Alf: #] is even greater
than or equal to Alstart+j-chalf : *]. Hence Alj: *)
cannot be a minimal circularstring, either. So if Is
safe not to keep the position j as another chall-
enger.

{case i) Alstart+j-chall ©] > Alj . #L

Recall that Alstart : starttj—challl = Alchall : j).
By concatenating strings we can see that Alstari
start+i-chail)Alstart+j-chall - *1 > Alchdall : Al © *].
Hence Alstart - *] > Alchali : #]. Therefore the cur-
rent challenger will beat the championisiart} even-
fually. Then chall will be the new start, and j will
be the new challenger. So we don’t have to keep J
as another challenger this time. It will be considered
later. [}

Now the algorithm follows:

Input : an array All.nl of symbols { n = 2}
Output : the starting position start of a minimal

circular string.

(1) fori:=1to2ndoPli]:=0

(2) for i := 1 to n do Aln+i] == Ali]

QY start = 1 chall =0, = 2

(4 while <) or {chafl=0) and (chall<n))

(5) if chafl = O then {case 1}

(6} il Alszart] > Al then siarg -

7 dse if Alstartl - Al then ol -
(&) FREN A

(g) else if Alstart] > Alj] then {case 2)
(10 start = j, chall = 0 j =)+ 1

(an cse if Alstart+-chalh] < Alj] then {ease 3)
(12) Pyl = chall, chall = 0y j =7 + 1
(13) else if Alstart+j-chall]l > Alj] then {case 4)
(14) dist = chall - start

(15) start = chall

(16) if Plj-dist] = 0 then

D chall - G

(18) else

(19 chall = Plj-dist]+dist

(20 if chall = start then chall = ()

(2D clse {cage 5}
(22) Pljl o= chail; j - j + 1

(23) i 2 % chall = start + j then chall = 0
{bv the lemma}

(24) return start
3. The Efficiency of the Algorithm

Now we will show that the loop terminates, and
does so In no later than Zn repetitions. First, note
that start + j always increases . At each repetition
of the loop, j always increases except one case, that
is, case 4. In this case, j i1s stationary, while stare
increases by advancing to the position that used to
be the challenger. Hence start + J always increases
at least by one at each repetition of the lcop. Since
J 18 alwayvs shead of start, j is greater than (sftart
if)/2. Therefore after 2n repetitions of the loop, J
gets greater than n

Ohserve that chall is also greater than (sfart+j)/2
unless chall is zero. It is because, as we observed
above, when the interval Alstart : start+j-challl has
grown up to meet the interval Alchall :jl, chall is
reset to 0. Hence chall 1s alwavs to the right of the
middle pont of start and j unless it i1s O Hence
after 2n repetition;s- of the loop, chall either gets
greater than n or is zero. Therefore, the loop does

SEE J4Ty

O
e

wiminate 1o later than 2n steps. Thus the proposed

algorithm’s tme complexity is O(#) .
4. Conclusions

We presented an efficient algorithm for finding
the lexicograhically smallest sequence among all the
cyclically shifted sequences of a given sequence.
This algorithm was motivated by an effort o effi-
ciently implement the state transition functions of
isotropic cellular automata, but we expect other
applications of this algorithm in the problems invol-

ving sequences.
References

{11 C. C. Langton, "Studyving artificial life with cell-
war automata”, Physica 22D, pp.120-140, 1986.

{21 K. 5. Booth, "Lexicographically least circular
substrings”, Inform. Process. Lett. 10(4), pp.240-
242, 1980

[3] Y. Shilvach, “Fast canonization of circular strings”,
J. of Algorithms 2, pp.107-121, 1981.

{4] D. Knuth, J. Morris, and V. Pratt, “Fast pattern
matching i strings”, SIAM 1. Comput. 6(2), pp.
323-350, 1977,

o

19783 A& oista 8t H(aA}

1984%3 University of Wisconsin
- Madison HAtErTH(o} g}
44

190213 Indiana University - Blo-
omington H-4b8a(o] &
abAh)

19933 ~ 94 ol F: ity HRYGFEFy 2ug

H ROk AKE o

IRl P T IR Hige @Y

of & T

[—

EEIRER LTS FERIR
stah)

193841 of & dapAte)
(T2 AL

19904 UJF - Grenoble 1 tiehit
&5 IHDEA)

1993 UCB - Lyon 1 thatat #zpA abetah(F sl

1993 ~& A FEu A FAs Zus

WA Ror: AFE AL HE dudE ¥E VLS ¢

RIRE

