SAMBH T =TT AT NTE08 1

) of

B oo wplde] ZEoe] §HAQ = 7~(C‘lauqe> el A& 9k 71339 Jsoll thek AAAS] HbE e Al
g} Boginge) Ao g i Weiel R FirL{clause mal A4S YaaA vepds e i
Woia QA Ed(Indexing Tree) & Z]QWPLE. otdl A B oldla] 48] Ale] QAL 3 Ao (Instruction)
>3 Aue Zade) PEE Afdearil olFsh: Ave FFHLE L}E}EH Fof, gdAEE ALgEle] =T
s ede 98 WAl 7MdvAel WAM(Warren Abstract Machine) & ©4& 23 WAMAIA ARESH= AdA 7l
Ho| =g Zyodel wa Al ool g HARE FaATM, T ’:ﬂli’iﬁ%‘s’l TaA4E HehM e 285
EET 9es was £ gl olzist ARG s st B =R E9 Iyl MR 94 e et
sa o) AS A =ulolo] Huflelof] FAste] FyT FY W ¥ AAE MeTrh

Flat Indexing: A Compilation Technique to Enhance the
Parallelism of Logic Programs

Hiecheol Kim'- Yong-Doo Lee'!

ABSTRACT

This paper presents a systematic approach to the compilation of logic programs for efficient clause indexing. As the
kernel of the approach, we propose the indexing tree which provides a simple, but precise representation of average
parallelism per node (ie., choice point) as well as the amount of clause trials. It also provides the way to evaluate the
number of the cases that the control is passed to the failure code by the indexing instruction such as switch on_term,
switch on_constant, or switch_on_structure. By analyzing the indexing tree created when using the indexing scheme
implemented m the WAM, we show the drawback of the WAM indexing scheme in terms of parallelism exposition and
scheduling cfficiency. Subsequently we propose a new indexing scheme, which we call the Flat indexing. The
experiment result shows that over one half of the benchmarks henefit from the Flat indexing such that, compared with
the WAM indexing scheme, the number of choice points is reduced by 15%. Morcover, the amount of failures which
oceurs during the execution of indexing instructions is reduced by 35%.

1. Introduction refutation(15). impose a strictly sequential

search over its search tree. For a given goal,

Logic languages(13.14). based on the SLD clauses making up its predicate are tried

sequentially in their textual order. In each

ilfjg 19983hIm g o hat Spaeiatnl A elw clause trial, unification occurs between the

o8 el ROl AN EABD mE clause’s and the goal’s arguments. [f the
o

A 10089 29 239 Alabeka 0 1998 49 139

arguments of the clause are variables., Lhe

clause must be tried regardless of the type of

the " goal arguments because the clause is
always successfully unified. On the other hand,
provided some arguments are non-variables.
their information allows us to determine the
clauses which will aiways fail to unify. those
clauses can sometimes be pruned away from
the list of clauses to try. The technigue is
usually called indexing and is clearly a good
way to improve the performance when the
number of clauses making up a predicate is
iarge. Therefore, compilers for most logic
language produce the code which implements a
kind of such indexing(1.8].

In spite of the research efforts over the last
decade, the efficient implementation of Prolog
is still an important issue in the logic
programming. As a sequential engine for logic
languages, the WAM(Warren Abstract Machine)
is one of breakthroughs which contribute to a
highly efficient implementation of logic
programs16]. Although its memory organiza-
tion and instructions are slightly modified or
extended 1o support parallelism, the WAM is
used in most parallel implementations of logic
languages as their sequential engine to achieve
high single thread performance(4 9}).

A choice point is one of runtime data
structures created during the execution of the
WAM code (1,16]. It serves to keep the
information associated with the execution of a
goal {ie, a predicate). Although according to
the role of the choice point. it is natural to
provide a single choice point per each
invocation of a predicate, the WAM compilers
create two choice points appearing contagiou-
sly in a search path. But. these two choice
points do not cause any significant disadvan-
tage against the sequential WAM except for
the cost paid for the creation of an additional
choice point. Rather. they contribute to very

compuct code, which is in fact one of the
design objectives of the WAMI{161.

In the parallel execution of the WAM code,
choice points have an additional role to represent
OH-parallelism{9]. This causes the issue of the
two choice points to become very controversial in
terms of parallelism and scheduling. Parallel
schedulers exploit OR-parallelism by taking
available (OR-parallel) branches (je. clauses)
from choice points(3),(9). Because OR-parallelism
of a predicate can be crudely regarded as the
number of alternative clauses which make up the
predicate, the available OR-parallelism spreads
over the two adjacent choice points, provided two
choice points are created. In this case, the
available OR-parallelism is not fully exposed at
the point of the goal invocation: only a part of
OR-parallelism is available at the point of the
goal invocation. As a result, the creation of two
choice points introduces a harmful effect on the
parallelism exposition by decreasing the average
OR-parallelism per node.

This paper points out that the creation of
those two choice points stems from the
indexing scheme implemented in the WAM
(which we will call the WAM indexing).
Through the quantitative analysis, we evaluate
the amount of the overhead from the viewpoint
of average OR-parallelism per node. To avoid
the overhead, we suggest a new indexing
scheme which we will call the Flat indexing.
To verify its performance, we implement both
the WAM and the Flat indexing and evaluate
respectively the number of choice points
created for a set of benchmarks.

The rest of the paper is organized as
follows. Sectlon 2 gives a brief introduction of
the WAM indexing scheme. Section 3 presents
a framework used for the analysis of indexing
result of the WAM
Indexing obtained by applying the framework.

schemes as well as the

Section 4 presents the Flat indexing that we

1910 SR EEXREY =2 W M/

propose to enhance the OR-parallelism and
scheduling efficiency. Section 5 reports the
evaluation result. Finally, section 6 offers

conclusions and future researches.
2. Background

This section introduces the WAM indexing to
make the paper self-contained as well as to
introduce some terminology to be used in
subsequent sections. In the WAM indexing, the
first argument of either a clause or a goal is
used as the keyi{l} (16). According to the
usual programmer’s tendency. clauses making
up a predicate are usually defined differently
depending on data tvpes. The differentiation is
mostly reflected in the first argument. Consi-
dering the trade-off between efficiency and
simplicity, the usage of the first argument as
the key for indexing can be considered as a
quite reasonable choice.

Civen an input key (ie.. the first argument
of a goal). the WAM indexing is applied to the
predicate to prune out a subset of the clauses
before their clause trials, provided those
clauges shall always fail the unification.
Among the four data types. (variable, cons-
tant, list. and structure), if a clause has a
variable as its clause key {ie.. the first
argument of the clause). the clause should not
be pruned away because the clause key will
always unify with the input key of any type.

- matchisum(A B), sumdC.D)) -
match(sum(A+D 1), sum(C+B-1)).

¢y match{sum{A 3} .C) - mateh(B-1,sum(c,B-11

¢y matchlab) -match(numeric(a), numericth)).

¢ match(X uscii(Y)) © maich{ascii(X) digit! Y)).

cs. match(ab) @ matchiascii{a) ascii(bl}.

;. matchiab} - matchidigitin) digit(b)).

;0 matchtb,X) matchidigit(b)digit(X)).

ey matchisum(A Bl sum(C 103

equal((A-C), equal{ld-B).
¢qt matchisumiA B C) ¢ match{sub(C- A}B).
¢y matchtiABLICDY -match(A,C), maech(B,D).
cy: matchifa, ALICH] -match(a,C), match(A.b}
¢ matchiX, numeric(Y)} :

~match! numerie{X) numeric{Y)).

{Fig. 1) Clauses making predicate match/2

match_¥: try_me_else G2 label
[Code for (3]

Go_label: retry_me_else (_label
{Code for Gal

Ga_labet retry_me_else Ga_label
[Code for (3]

Gi_label trust_me_eclse_fail
[Code for Gal

(Fig. 2) The structure of the WAM code impiementing
the chaining of four groups in match/2

To make such clauses always subject to
clause trials, the WAM indexing divides the
clauses, (¢;.....cn}. which make up a predicate,
into a set of groups, Gi....Gn (1=m<n),
where G: is a set of contiguous clauses either
of the following two types:

e Type ¢ G consists of only a single clause

whose key is a variable

e Type B: G consists of a maximal sequence

of contiguous clauses whose key is not a
variable.

Fig. 1 shows twelve clauses which define
predicate match/2. According to the above
grouping rule, four groups are defined as

follows: 1= ¢y, Co. cy), Go= {cy). and Gs=

[¢5¢6.. €7 Cy, Gy, Cg, C3t. G = {ceppl. Note
that G2 and Gs are of type ¢ and G, and Gs
are of type £.

In the WAM code of a predicate, groups
defined for the predicate are chained such that

cach group ds vistted consecutively ol runtime
regardless of the type of the input kev, By
doing this way. the clauses with variable keys
are always tricd. The implementation uses
instructions {ry me else, retry_me else. and
trust_me else_faill16] as shown in Fig 2.

It is not necessary to make any indexing as
for groups of type @. because they contain
only a single clause which must be always
tried. The actual indexing iz applied to the
groups of type S that consist of more than
one clauses. The indexing consists of two steps
made firstly with respect to data types of the
clause key. and secondly with respect to their
values. The latter step is applied only to the
clauses whose keys are of either the constant
or the structure type because only constant or
structure data can have multiple different
values,

Given a group of type £. the indexing
process begins with making partitions with
respect to the clauses of the group according
to the data type of the clause key. As the key
of each clause has one of the following three
data types. (constant. list. and structure),
three partitions are produced respectively as
Fe, P, and P, where P B or P, is an
ordered set of clauses whose keys are
respectively a constant., a list, or a structure.
In addition to these partitions, P, is defined as
the ordered set of all the clauses in the group.
As the second step of the indexing, one more
level of partitioning is made as to P and P
In this step. the clauses having the same key
value are grouped as a subpartition.

Glven an input key of tvpe x, the indexing
made over the four partitions, (P P P P,
selects one of the partitions, F,, according to
the type of the input key. The control is then
dispatched to partition P.. By doing this, the
rest of the partitions are excluded from clause
frial. The implementation is made by using

sty uction switel on term that o has o fow
arguments provided respectively for each type
The value of each argumeni has one of the
following values.

® Case 1! the address of the clause’s code

leg., C, in Fig 3] when the relevant

partition contains only one clause.

¢ Case 2° the address of the partition’s
code (e.g.. C partition in Fig 3) when the
refevant partition contains more than one
clauses,

® Case 3! the address of the codele.g.. fail

in Fig 3} which processes the unification
failure when no partition is defined for
the given type.

When the partition thus selected from
instruction switch on term is either P or P
the control is dispatched to some subpartition
according to the value of the input key. The
implementation is made by using instruction
switch on constant {or switch on structure).
Either instruction has a hash table as its
argument in which each subpartition is
provided with an entry.

Gi_code: seitch_on_term Cy, CulC_partition!{ail,
Cipll_partition|fail, Ci|S_partition/fail
C_partition: switch_on_constant {pointers to buckets)
{Lists of subpartitions for constants]
I_partition: |A bucket for lists]
S_partidon: switch_on_structure {pointers to
subpartition}
{Lists of subpartitions for structures)
(s labels try_me_clse (o label
iCode for clause Cal
Ciz_label: retry_ime_else Cig_label
[Code for clause Col
Ci_label: retry_me_else_fail

[Code for clause Ci

{(Fig. 3) The code structure of a group which has &
clauses. Argument Cia/C_partionitai indicates
efther Ga, C__partitios or fail

1917 SHEMENPISG SRR HEE MTE®)

The entry holds the address of the
subpartition’s code if the subpartition contains
more than one clauses: otherwise. it holds
either the address of the clause if there is a
clause or the address of the failure code if
there is no clause matching with the input
key. Therefore. for a given input Key.
according to the value of the entry, the control
is dispatched either directly to a clause, to a
subpartition. or to the failure code.

The partition. selected when the input key
is a list or a wvariable. as well as the
subpartition selected when the input key is a
constant or a structure will be referred to as a
bucket to be denoted as By where x is either [,
v, ¢, or s to indicate the type of the input
key. According to the earlier description of
switching instructions (switch on_term, switch_
on_constant, or switch_on_structure), it should
be noted that a bucket always contains more
than one clauses. The WAM code of a bucket is
organized such that all the clauses in the bucket
are tried one by one. The implementation is
made by using instructions ¢ry, retry, and
trust[18. Fig 3 shows the code produced for
group Gy of match/2.

switch_on_constant Z,
{a. C. subpartition, b’ (:_Cuode)
Cosubpartition. v Gi_Code

" _partition

trust Co_Code

I_partifion: trv Cro_Code

trust Cin_Code

trust Cr_Code
S_partition switch_on_structure 1,

{sum/2 ¢ Sam_partition)
Suem_stbpartition: {ry Cy Code
trust Co_Code

Cs_Label: try_me_else Ci Label

Cs Code: [Code for matchla,b) @
match(ascii(a), ascii(b}}]

Ce_Label’ retry_me_else (;_Label

G Code: [Code for mutchia,b) *

matchldigit(al, digit(h))]

»

Cr_Label:
C.Code:

trust_me_else_foil
[Cade for matchtfa, ALLCBI]) -
matchia, C), matchi A, b))

(Fig. 4) A code for group G3 of match/2

Before we proceed to the next section, let us
briefly describe the relation between the WAM
indexing and the number of choice peints created
for each invocation of a predicate, In the
WAM. instruction try_me else or try creates a
choice point. When more than one clauses are
defined for a predicate, the code for the first
clause always starts with instruction féry me
eise. In this case, if there is a bucket with more
than one clauses in any of these groups. its code
starts with instruction fry. If the bucket is sel
-ected at runtime, two choice points are thus
created contagiously in the search path respect
-ively by try_me else and by try. For example,
instruction try_me else in the code for predicate
match/2 creates a choice point for which four
partitions are exposed as alternative branches
(Fig 5). In the sequential execution, the four
partitions are executed sequentially from left
to right. In parallel execution, they can be exe
-cuted in paraliel respectively by different proc
-essors. As depicted in the figure, if the input
key is a, a new choice point is created inside
group Gz by instruction try in Ci subpartition
(Fig. 4).

3. Framework for Indexing Schemes

In the sequential execution of the WAM
code, the creation of two contiguous choice
points for a predicate (i.e. for the execution of
a goal) can be regarded just as a variance of
an implementation since it does not cause any

signiilcant perlormance pendity In the parailel
execution. however, it has a verv harmful
influence on the performance by decreasing the
amount of parallelism per choice point and the
efficieney of task scheduling. This section
presents an analysis framework which aims at
identifying the influence that the WAM
indexing has on the OR-parallelism of Prolog
programs. The analysis consists of the
identification of the shape of an OR-parallel
search tree created under the WAM indexing
and also a quantitative evaluation of the

amount of OR-parallelism per choice point,

Choice
point

(Fig. 5) Choice points and parailelism

3.1 Analysis Framework: Indexing Tree

For a predicate P defined by more than one
clauses. we now provide some notations and
definitions associated with the WAM indexing.
Let the sel of clauses which make up predicate
Pbe ¢... ¢,. Suppose that the clauses are
divided into m groups: &z G:..., Gm. Let us
define a mapping N such that N(S/ be the
number of elements of a set S. The number of
clauses in group (& is then denoted as N(G:).
lie.. Z%‘.N(G;)=mn) For a group (7. let the

huckets selected for each type of the key be
b.. by b, and b;. If no bucket is selected
for a given type x by is regarded as an
cmpty set. Note that a bucket is for a specific
value of the key and thus normally includes a

subset among the clauses whose key is of its
type. Therefore the following relation holds.

o
=
A
»m
n
0
iz
1]
EL
i
o ol

qg get Z3 oigAl 7 1002

NG N D NOB)y NCb)

in oorder to analyze how many chivlce points
are created in the execution of a goal, a tree
to be called an Indexing tree is proposed. An
indexing tree is a tree T=(N.EJ. where N is
the set of nodes and E is the set of edges. A
non-leaf node in an indexing tree represents a
choice point and is referred to as a CpNeode
(Choice Point Node) Given a predicate, if the
number of its groups m is bigger than one, a
choice point is always created at the beginning
of its execution. The CpNode of this case
becomes the root of the predicate’s indexing
tree and it has m subtrees. each respectively
for a group. To see the shape of a subtree. it
must be noted that for each group. one of the
following three cases occur when executing
switch_on_term. switch on_constanf, ovr switch
on_structure:

® Case 1: No one bucket is chosen: no
clause iz tried and the contfol moves
directly to the failure code. The subtree
of this case is represented as a leaf node
to be classified as a SfNode (Switch
fallure Node).

e (Case 2. A bucket having only one clause
is chosen: only one clause is tried. The
subtree of this case is represented as a
leaf node to be classified as a CtNode
(Clause Trial Node).

e (Case 3: A bucket £ having more than
one clauses ig chosen: more than one
clauses are tried. The subtree of this
case consists of more than one nodes.
The root of the subtree is always a
CpNode because the number of clauses in
bucket £ is bigger than one. As Nf{h)
clauses will be tried with respect to this
new (pNode and their trials will not
cause any more creation of choice points,
there are N(b) CtNodes in the subtree.

According to the abeve discussion, any

W4 StREEMEE TF L HOE WERGR D

indexing tree defined for a predicate has up to
three levels and a non-leaf node is always a
CpNode and a leal nodeilLfNode) is always
either a SfNode or a CtNede. Fig b illustrates
an indexing tree for a predicate.
Given a predicate. its indexing tree is
defined differently depending on the input key.
if input key is a variable or a list, the form of
the index tree is always the same regardless of
the wvalues of the input key. On the other
hand. if the input key is a constant or a
structure, the form becomes different depen-
ding on the value of the input key. In this
case., to compare the size of indexing trees, we
define the following criteria:
e Given indexing trees T; and T: T is
targer than 7Tb if the number of CpNodes
in 7y is bigger than the one in 7o

e [f 7; and T- have the same number of
CpNode, the one which has more leaf
nodes is /arger than the other.

Based on the above definition, we introduce
the maximum and the minimum indexing tree
with respect to a given data type as follows.

¢ For a given data lype, the maximum

indexing tree of the type is the one which
has the largest among the indexing trees
possible for the type.

® For a given data type, the minimum

indexing tree of the type is the one which
has the smallest among the indexing
trees possible for the type. When the
input argument is either a constant or a
structure, the mintmum indexing tree is
the one resulting from the input key
which does not match with any of the

clause keys.

32 The Analysis Resuit of the WAM Indexing

In order to analyze the WAM indexing, we
use the framework established in the previous
section. In the analvsis, we calculate for each

data type the size of the minimum and the
maximum indexing tree of a predicate. where
the size is represented in terms of the number
of CpNodes and LfNodes.

Consider a predicate consisting of m groups.
The minimum and the maximum indexing tree
are the same if the input argument is either a
variable or a list: otherwise, they may be
different from each other. For a given input
key of the constant or the structure type. if
the bucket chosen inside a group G consists of
more than one clauses, let us denote the
bucket as &;. For all { 1<i<m). let r be the

number of such buckets. Given an input key,
number r is always defined uniquely. When the
input key 1s of the constant (resp. structure)
type and has the value which results in the
maximum value for r, the indexing tree of
each case becomes the maximum indexing tree
for the constant (resp. structure} type. In this
case, let us denote each of the bucket in group
G (1<i<m) as b ; (resp. b ;).

Table 1 shows the analysis resull made for
a predicate, where p stands for the number of
choice points created with respect to the
groups. In other words, it becomes 0 if the
number of the groups is I otherwise, it
becomes 1. As discussed earlier, r is the
number of buckets selected in all the groups
with respect to a given input key. Now that a
choice point is created for each of the buckets,
the total number of CpNodes becomes p plus r.

The number of the LfNodes of an indexing
tree can be obtained by summing up the
LfNodes of each level. The number of groups
minus the number of CpNodes {ie.. m-r)
becomes the number of LfNodes in the second
level. The number of LfNodes in the third level
is the total number of clauses in the buckets

selected in each partition for the input key.

wrabie 1, The Dandnui and e maximun ndexing lee
(pis 0 if m=17, otherwise, p is 1)

Minimum Indexing Tree Mavinwn Indexing Tree |

Type of | Number Number
Ut keYll of | Nymber of JfVides of Number of 1iNodes
(pNodes (pNodes
Varlable pr n pH n
List pr | mert 2_‘.-’\"(bl per m—r+ glN(b
Constant D m P'r m— ¥+ S;‘l NOE)
Structure p m pr m—r+ Z:IN(b

Table 2> The number of clauses (NoB: number of buckets)

D | O\ Bped) | Gilipea) | GaTwpesd) | G8Topee) pumpmprer
e | NoB| N | NoB | Nibu) | NoB| Nibs) | NoB|Ni'a)| 7

Varigble | 1 3 0 0 1 7 ¢ { 2
List 0 g 0 4 | M 4 U 1
Constant || 0 Q O 0 1 g 0 0 1
Structurel] | 2 0 0 1 2 0 0 2

(Table 3> The size of the maximum and the minimum
indexing tree

Type of Minimum Indexing Tree | Maximum Indexing Tree
input key|| Number of | Number of | Number of | Number of
CpNodes LfNodes CpiNodes LiNodes

Variable 1+2=3 12 1r2=3 12
List 1=1=2 A1 r2=0 -1-2 4 1:2-5
Constant i 4 1+1=2 4-1+2-5

Structure 1 4 112=31 4-2+2+2=6

As discussed earlier. the result shows that
the maximum and the minimum indexing tree
are the same if the input argument is either a
variable or a list. In general terms. (1) up to
m+] choice points are needed under the WAM
indexing if each group has at least one bucket
that has more than one clauses. In addition.
(2) two chotce points are sometimes created
contagiously in a given search path.

In order to verify the analysis result. we
apply the result to predicate maich/? in Fig.
1. As for the predicate. the number of clauses
(n} is 12 and the number of partitions {m) is

o PEHIG | e 22 L

A 3 A= I =S Wy CHEA j e PR
L LR HL EE L s slor Sl sl T 1a1h

ol the predicate. for constant 2. bucket
{er.cet 13 defined in group Gs For structure
sum/2. bucket {ci.oob and bucket {eacsl are
defined vespectively in ;5 and Gs Finally.
bucket {cio.cii} in group (s is defined for a
tist. As for a wvariable. buckets bn and Ay
have more than one clauses. The maximum
number of buckets {the maximum value for 7r)
that have more than one clauses can be
selected is thus 2 I I and 2 respectively for
the variable. list, constant, and structure. The
other parameters associated with each bucket
are listed in Table 2. By using the parameters. p
and r. as well as the number of clauses in
buckets. we calculate the size of the indexing
tree respectively [or each data type. Its result
is shown in Table 3. According to the table, up
to three cholce points are required in the
execution of predicate match/2 when the input
key 1s either a variable or structure sum/2.

4. Flat Indexing

The analysis result in the previous section
shows that up to m+7 choice points are
needed when a predicate has m groups. It also
shows that up to 2 contagious choice points
may sometimes be created in a search path.
The latter case implies that, for a given
predicate, the amount of OR-parallelism (/i e..
the total number of clauses defining the
predicate) may spread over the twe choice
points. This incurs a harmful influence on the
parallelism exposition by decreasing the
average amouni ol UR-parailelism per node.
This section presents the Flat indexing scheme
proposed to increase the average QR-parallelism
per choice point,

4.1 Description of the Flat indexing
An input key may match with the two
classes of clause keys. 7e . either a variable

1016 StEEE RIS T ML Hiisos

or the one of the same data type. In the WAM

indexing scheme. each class is dealt with

differently.
defined as an

variable key 1is
independent group such that
tried. On the other hand,
divided into
partitions according to the types of the clause

Clauses with a

they are always
each non-variable group is
key and thus only a single partition will be
selected depending on the type of the inpul
key. The advantage of this approach is that
very compact code can be obtained since the
WAM
single copy of the code for the clauses with the

code for a predicate contains only a
variable key. However, as this way of grouping
results in the division of the clauses to try
kinds
variable group and the partition chosen in the

into two of disjoint sets, ie.. the
non-variable group according to the data type
of the input key and as each kind may create
respectively a cholce peint, the problem of the
two choice points is raised.

The Flat indexing is motivated to solve the
problem of these two choice points. In order to
make only one choice point be created in a
search path. the indexing scheme must ensure
that, for a given input key. all the clauses to
try must be contained in a single set. In the
Flat indexing, all the clauses making a
predicate are thus locked upon as one group
whose meaning is basically the same as the
one discussed in the WAM indexing. The group
is divided into a set of partitions, named as
Pe. P. P.. and P as does under the WAM
different WAM

indexing, partition P 1s composed of those

indexing. But from the
clauses whose key is either a variable or a
data of type x. the partition contains all the
clauses subject to clause trials. For example of
mateh/2, Pris {cs. cw. cr, cizd where the key
of clauses ¢y and ¢ is a list and the key of
clauses c4 and ci» is a variable.

By defining the partition in the above way,

for any inpui key. all the clauses to try are

(e.g.. partitien). In the

WAM indexing, when an input key fails to

contained in a set
match with any clause with a non-variable key
in the partition,
dispatch the
routine which will then lead to the processing

the switching instructions

control to a failure service
of the next group. By doing this, the clauses
with a variable key are always tried. Now that
only a group exists in the Flat indexing, this
case is treated differently. In addition to the
normal partitions, a specific partition, called
the failure partition P:, is introduced which
contains all the clauses with variable keys.
For example of match/2, the failure partition
becomes {cs. ¢y, For a given key which does
not match with any of clauses with non-
variable keys. the switching instruction moves
the control to the failure partition: thereby,

all the clauses with variable keys are tried.

{Table 4> The analysis result; b'c(resp. b's) is the
bucket whose clause size is the largest among
the buckets with a constant (resp. a
structure} key.

Type of Maximum | Maximum Minimum
. yp(f k Number of | Number of Number of
InpuyL ey CpNodes LfNodes LiNodes

Variable 1 n n

List 1 NCby) b,

Constant 1 N b J b,

Struct 1 NCb) b,

{Table 5> The maximum and minimum indexing tree for
match/2 under the Flat indexing, where the
numbers enclosed in parentheses are for the
WAM indexing scheme

Minimum Indexing Maximum Indexing
Type of Tree Tree
input key | Minimun of | Number of | Number o | Number of
CoNodes | EfNodes | CpNodes | LfNodes
Variable 1(1} 12(12) ey 12(12)
List Hn 4(5} 1(2) 4(5]
Constant 1) 204} 142) 5(b)
Structure 1(3) 24y 1(3) 6(6)

The implementation ol the Flat indexing 3
made by using switching instructions as well.
In the beginning of the code. instruction
switch on ferm dispatches the control to a
partition according to the data type of the
first input argument. The semantics of the
instruction is the same as the one in the WAM
indexing except that the destination for each
data type becomes the failure partition if there
exists no clause whose key matches with the
input key. If the partition selected by
instruction switch_on_term is either F: or P
instruction switch on constant or switch_on_
structure dispatches the control to the
appropriate subpartition depending on its data
value of the input key. Again, these Instruc
tions are the same as those in the WAM
indexing except that they have an additional
pointer Lo the failure partition. If no bucket
exists for the data value the control is
transferred to the failure partition as well, As
does under the WAM indexing, partition B or
P as well as subpartitions chosen with respect
to constant or structure keys are called
buckets and its code are organized by
instructions try, retry. and trust. Fig. 6
depicts the code structure produced for a
predicate under the Flat indexing. While the
code is very similar to the one produced for a
partitien by the WAM indexing. it should be
noted that arguments of instructions switch on
_term. switch on _constant, and switch on
structure are slightly different from those in
the WAM indexing. In order to clearly show
how a predicate is compiled under the Tlat
indexing. we provide In Fig. 7 the code
structure for predicate match/2,

42 Analysis of the Flat Indexing

Ag we did for the WAM indexing, we derive
the number of the CpNodes and the LfNodes
in the indexing tree created for a predicate

T 0 VT EE IR eE2507 AR Ol
Eold g gRep adged s M E RS

under the Flat mdesing scheme According 1o
Table 4 which shows the result. the number of
("pNodes created for a predicate is always one.

Table 5 shows the values obtained by
applying the analysis result in Table 4 to
predicate match/2. It also shows the values
taken from Table 3. The results clearly show
the difference between the WAM indexing and
the Flat indexing: the number of choice points
created for cach predicate is always one in the
Flat indexing, while it can be more than one
in the WAM indexing. Interpreted within the
context of OR-parallelism, the reduction of
choice points means the increase of the
amount of OR-parallelism exposed for each
choice point. In other words, the Flat indexing
contributes to the reduction of the non-leaf
nodes in the runtime search tree. thereby, it
increases the amount of OR-parallelism per
node.

A close examination of LfNodes in the table
reveals a strange vesult. that. the number of
LfNodes between the WAM indexing and the
flat indexing is sometimes different. For
example., when the input is a list key, the
number of LfNodes is four under the Flat
indexing, but five under the WAM indexine.
This is explained by using their indexing trees
created when the input key is a list. Among
the 5 LfNodes under the WAM indexing, it is
found that the first LfNode is for the failure
(i.e.. SfNode of case 1 resulting from
switch on ferm instruction in the first sroup
and the remaining ones are for clause tries
Uoeo, CtNodes of case 1 or 2 In section 2)
respectively for ¢y cw ¢, and 2. On the
other hand. all the four nodes under the Flat
indexing scheme are for clauses tries (Ji.e.,
CtNodes of case 1 or 2). As a matter of fact,
leaf nodes in the Flat indexing consist always
of CtNodes, whereas the leal nodes in the
WAM indexing consists of CtNodes as well as

At mlT A s e e ST A
s shm Mgl T Hin A

Hrziosn

Predicate:
Switch_on_term
(Start. C_partition | O 1 Fatlure_partition
Fail_partition [Code for failure partition]
C_partition’ switch_on_constant
[pointers to subpartitions. Fail partition}
[lists of subpartitions for constants)
L_partition [the bucket for lists]
S_partition’ Suitch_on_structure
[pointers to subpartitions, Fail_partition}
[lists of subpartitions for structures]
Start: [Code for clauses}

(Fig. 6) The structure of a predicate code

maich 20 swich_on_term Ci_Label, C_partition,
L_partition
Fail_partition: tryv C;_(Code

tust Crz_Code

switch_on_constant
(@ Cosubpartition, b Cy_subpartition}

{_partition:

(o subpartition” try Ci_Code
retry Cs Code
retry Cs_Code
trust Cr_Code

O, _subpartition. try C;_Code
retry C;_Code
trust Crz_Code

I_partition. try Cy_Code
retry Ciy_Code
retry Cir_Code
trust Crz_Code
S_partition: switch_on_structure 1, {Swm-subpartition}

Sem-stubpartitiontry C;_Code

retry Cz_Code

retry (a_Code

retry (s Code

retry Cy_Code

trust Crz_Code
(o Label: try_me._else Cs_Lael
Ci_Code! [Code for match(sum(A B, sumiC,D)) :
mateh(stubl A+ D-1),sum{ C+ 8- 111
; Codes for G5 Cu
trust_me_esle_fail
[Code for match(X numericfY)) -
match(numeric(XJ, numeric{Y)).]

Cpz Label:

{Fig. 7) The code structure for match/2 under the Hat
indexing

SfNodes. As a result, given an input key, the
number of LfNodes is always smaller than or
equal to the one in the WAM indexing.
Interpreted within the context of the parallel
execution. the removal of leaf nodes caused by
the failure of switching instructions (case 3 in
page 5) corresponds to the reduction of task
switching by a scheduler (4,5]. In general
paraliel logic programming systems, the task
switching 1s a very expensive operation because
the scheduler must prepare the environment for
the destination node(6,10J. When a scheduler
performs task switching to a leaf node of case
3, it will finish the task right after the task
switching., just wasting expensive system
resource. Therefore, the reduction of leaf nodes
caused by case 3 enhances the performance of
parallel logic program systems by eliminating
unnecessary task switching.

5. Experiment Results

In previous sections, we show that the size
of the indexing tree generated under the Flat
indexing is always smaller than that in the
WAM indexing thanks to the reduction of the
amount of CpNodes and SfNodes. The reduction
of the number of choice points results is the
primary benefit by increasing the amount of
average OR-parallelism per choice point.
Moreover, the removal of seme terminal nodes
caused by failure from instruction switch_on term
(switch _on_constant, or switch on_structure)
increases the parallel performance by reducing
the total number of instructions to be executed
as well as by eliminating the unnecessary
scheduling activities with respect 1o the
partition which will just fail in vain.

As opposed to the runtime benefits, the Flat
indexing has a negative effect on the static
code size. Primarily due to the failure
partition, the code size becomes larger under

<Table &> The companson 0f the indexing tree size
between the Flat and the WAM indexing

Flat Trdexing WAM indexing Comprarison
Prolog
Program || Cobodes | LNodes | UpNodes | LiNodes | CpNode T iNodes
5 1 twli (W2 (WAL Wl
boyer* 79476 80157 | 282097 | 194437 1.7 218
broweses 274714 | 271400 | 278387 | 281873 101 1.04
cal 30019 22641 30019 22641 1.00 1.0G
chil_parsers 32620 39539 43845 40354 1.10 1.02
fuasid &1 222 sl 222 1.00 1.60
fiam 300736 ¢ 359734 | 309736 | 3n873 1.0 1.00
WEAGOT o5 | ases 1 o2ves | M5 | Loo 122
pand 8142 | w66 | 8142 | 8885 | 100 | 101
e A0 578 380 | 578 160 1.00
pel. i+ 14030 | 12531 | 18975 | 30933 | L 245
queensli= 533231 | 233217 | 834592 | 634878 119 1.14
reducer= 10433 154986 11904 15986 1.14 1.00
sddax 368 T04 568 744 1.10G 1.05
sendmore 12071 26148 12071 26128 1100 1.00
tith 83625 15416 K365 15916 1.100 1.00
tak_gvar 790 418 7950 418 100 £.00
2ehra 14498 17315 14463 17415 1.00 EOO
Average/Averuge* L0815 | 1.19/1.35

the Flat indexing due to failure partition. In
the presence of the above trade-off, it is
required to verify the performance of the Flat
indexing by answering the following questions:

* What fraction of Prolog programs benefits
from the Flat indexing?

* How much reduction can be achieved by
the Flat indexing to the size of the
indexing tree for the benchmarks which
benefit from the Flat indexing?

o How much increase does the Flat
indexing cause to the size of the code?

The first and second guestlons are to see

how much effective the Flat indexing will be
for practical applications. The third question is
to see how less compact the code will be under
the Flat indexing. Experiments made to
answer these questions are based on the
TC-Proiog (Threaded C-code Prolog) system.
TC-Projog is a sequential Prolog engine

— O EF el gEy JpME 2ok B viEal g1 1919
impitemented via O code translationi® 11!

Different from other purely sequential Prolog
gystems, it is developed mainly for use as a
sequential engine of the parallel implemen-
tation of Prolog. The normal TC-Profog compiler
produces the extended WAM code in which the
indexing part is based on the Flat indexing
scheme. Linked with an emulation engine, the
code has been executed on a HP's SPP-1200
multiprocessor system(7}. While the model we
used has 16 CPUs, each of which is a
PA-RISC 1.1, and runs under the SPP-IX 3.1
operation system, the evaluation is performed
on a single processor configuration because our
main concern is to identify the characteristics
of the indexing tree. In the experiment, we
insert some instrumental code extracting
information on the indexing tree while the
sequential Prolog code is executed. In addition,
by modifying TC-FProlog, we implement another
version that supports the WAM indexing. To
distinguish between the two. the normal
TC-Proiog will be called TC-Prolog-FI (the
Flat indexing version of the TC-Prolog) and
the version supporting the WAM indexing will
be called TC-Prolog-WI (the WAM indexing
version of the TC-Prolog).

We selected 17 benchmarks which have been
frequently used in the evaluation of Prolog
systems(2.8.12). Respectively for each version,
we measured the following three performance
value: (1) the size of the indexing tree. (2)
the size of assembly source. object. and
executable code. and finally (3) the sequential
execution time.

Table 6 shows the size of the indexing tree
for each benchmark. Among the 17 benchmark
programs. 9 benchmarks marked by asterisks
benefit from the Flat indexing. As for the
entire benchmarks, the WAM indexing creates
8% more choice points and causes 19% more

switch on_term, switch on_constant or

20 SEEEEEE TE A ST =08

switch on_structure failures than the Flat
indexing. As for the set of benchmarks
penefiting frem the Flat indexing. the WAM
indexing creates 15% more choice points and
causes 35% more switch on_term, switch on
constant. or switch on structure failures than
the Flat indexing.

{Table 7> The code size and execution time measured
by TC-Prolog{Flat indexings and the compar-
ison of the code size where each entry is the
rate of TC-Prolog-Wi over TC-Profog-Fi(ie.,
TC-Prolog-Wi/ TC-Proiog-F1)

. Assembly] Ohiect |Executable[Execution Assersbly| Objcet | Executa

Prolog code |code size| code size | time code | code |ble code
Program ||, : . .
(Kbytes} | (Kbytes) | (Kbytes) | {msec) | mto | rato | rato
oyer+ 283 62 266 1374 095 [094 | 100
trowsex 79 20 237 1662 094 | 086 | 1.00
cal 75 14 237 180 099 | 095 1.12
kst || 794 i82 3% 333 | 083 | 091 | 098
crypt 59 13 237 13 1.00 [088 | 098
ham 61 16 233 1875 100 | 089 | LOO
LA (A 71 18 238 21 094 | 0841 1.00
nand« 431 95 299 60 087 1095 | 100
ey 41 11 233 277 | 100 | 082 | 100
poly_Jk 71 18 238 109 087 | 090 | 100
queensl O+ 41 11 233 6018 095 | 084 | 1.00
Techier+ 217 al 262 100 086 | 084 | 10O
sida* 141 34 250 6 086 | 0% | 100
sendmine 59 14 233 139 100 | &4 | 1.00
tak 20 6 229 298 1.0 | 087 | 100
tak gvar 26 8 229 10 104 | 090 1.00
2ebra 42 12 233 112 1.02 0493 | 1.00

Average/Average* 098056 103090] 100/1.00

Table 7 shows the code size and the
execution time measured for TC-Prolog-FI. The
compiler used for the evaluation is gcc version
26.3 and all the compilation is with the
optimization level -02. Since TC-Prolog -FI
translates Prolog into C via the WAM (Warren
Abstract Machine)., when measuring the
assembly code size, we use -S option.

The righthand side of Table 7 also shows
the ratio of TC-Prolog-WI to TC-Prolog-FI in
terms of the code size and the execution time.
On average, the assembly code size and the

object code size in the Flat indexing are
respectively 2% and 10% larger than these in
the WAM indexing, while the executable code
sizes are mostly the same. As for the
benchmarks affected by the Flat indexing, the
assembly code size and object code size in the
Flat indexing are respectively 5% and 10%
larger than those in the WAM indexing. This
indicates that the Flat indexing does not lose
much in terms of code compactness.

6. Concluding Remarks

Indexing is a method that prunes away
unnecessary inferences in the evaluation of
logic programs. To find an optimal indexing is
quite complex and also demands a large
number of abstract instructions for its
implementation. In the indexing scheme of the
WAM, the first argument of a clause is used
as a key for indexing. In terms of the trade-off
between efficiency and simplicity. using the
first argument as a key is quite a reasonable
choice. However, an invocation of a predicate
may sometimes result in the creation of two
contiguous choice points in a search path. In
this case. because the OR-parallelism is
expressed over the two choice points, the
indexing scheme of the WAM is not efficient in
terms of parallelism exposition. It is argued
that the problem can be solved by compiling
Prolog programs via different indexing
schemes, and particularly the Flat indexing
that we present in this paper. The
experimental results show that over one half
of the benchmarks benefit from the Flat
indexing such that, compared with the WAM
indexing, the number of choice points is
reduced by 15%. Moreover, the amount of
failures during the execution of indexing
instructions is reduced by 35%. We believe
that these reduction will contribute to higher

paratiei periotmance thanks to the mereased
amount of average parallelism per node as well

as to the decreased amount of task switching.

References

[1] H. Ait-Kaci and A> Podelski. Toward a
Meaning of LIFE., Journal of Logic Progra
mming, Vol.16, 195-234. 1993,

[2] Al and R. Karlsson. Full Prolog and
scheduling OR-parallelism in Muse. Inter
national Journal of Parallel Programming.
19:445-475, 1990,

[3] Ali and R. Karlsson. The Muse Approach
to OR-parallel Prolog. International Journal
of Parallel Programming. 19:129-162. 1990,

[41 A. Calderwood and P. Szeredi. Scheduling
OH-parallelism in Aurara - the Manchester
Scheduler. In Proceedings of the sixth
International Conference and Symposium
on Logic Programming. pp.419-435. 1989,

[51 A, Cieplelewski. Scheduling in OR-Parallel
Pralog Systems: Survey and Open Problems.
International Journal of Parallel Program-
ming. Vol.20. No.6. pp.421-451. 1991.

{6] J. Conery, Binding Environments for Para—
llel Logic Programs in Nen-Shared Memory
Multiprocessors, International Journal of
Parallel Programming. Vol.17. No.2. pp.125
-152, April, 1989,

[7] Exemplar Architecture, Convex Press, Rich-
ardson, Texas, 1993

[3] C. Diaz and D. Diaz. wamcc: Compiling
Prolog to C. In Proceedings of the Joint
International Conference and sSympoesium
on Logic Programming. MIT Press, Dec.
1995.

[9] G. Gupta and M. Hermenegildo., ACE:
And/Or-parallel Copying-based Execution
of Logic Programs, In Proceedings [CLP91
Workshop on Parallel Execution of Logic
Programs, 1991,

O G Gupta and B .iavaraman. Analvsis of
Or-parallel Execution Models, ACM Tran-
sactlons On Programming Languages and
Systems. Vol.15, No.5 pp.6593-680. Sep.
1993,

(111 B. Haussman. Turbo Eriang: Approaching
the Speed of €, Kluwer, editor Evan Tick
and Giancarlo Sueei, pp.119-135, 1993.

[12] ¥ Henderson and T. Conway and Z.
Somogyi, Compiling logic programs to C
using GNU C as a portable assembler, [n
Proc. of the JICSLP'%5 Post conference on
Implementation Techniques for Logic Prog-
ramming Languages, Portland., USA., MIT
Press. Dec,. 1945,

(13] J. Jaffar and 8. Michayloy and P. Stucke
yand R. Yap. The CLP(R) Languages and
System. ACM Transactions on Programming
Languages, Vol.14, No.10. pp.339-395, 1962,

1] R. Kowalski. Logic for Problem Solving.
Elsevier North-Helland, 1979,)

(15 .J. Llovd. Foundation of Logic Program-
ming, Spring-Verlag, 1987,

[16] D. Warren. An Abstract Prolog Instruction
Set. Technical Report Technical Note 309.
SRE, Oct. 1983,

4 3 &

19839 AAsw Axgsl
£ (T

1983+ - 198841 (34) 44 b
ool el

1991 Uiniv. of Southern
Californi{Computer
Eng. M.3.).

199631 Univ. of Southern Californi (Computer
Eng. Ph.D)

199651 ~1997 (F) *W'%Ds TAAFY

199761~ @A BFstm AREAR A 2A)

gHaliel yaAe). ﬁ“ﬂ% Hafolel

1G22 stEEEMIED =27 MhE M7=

1981 ~1982d (d)=4ds
Aargsts A4 ws

1082 oy Lﬂ'&‘i-

iéj
£
24
e
2
)

19913 ~1993d Univ. of Southern California W
=

199549 @=aFUIT NG AAFAH(FTIAY

1995~ A A oISt ALENFHRE DG
HalBol: AFEI TR AFETH. Internet &8 &

