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Pipelined VLSI Architectures for the Hierarchical Block-Matching
Algorithm

Hyung-Chul Kim" - Seung-Ryoul Maeng''

ABSTRACT

This paper presents two parallel VLSI architectures for the hierarchical block matching algorittm (HBMA). The
repeated procedure of HBMA and the bilinear interpolation cause the data dependencies that are obstacles in parallel
processing. The proposed architectures have the pipeline scheme to mainly solve the interlayer data dependency. From
two possible order of vector flow, two specific three-stage architectures are designed based on the given parameters of
HBMA. U-Architecture follows the unidirectional scan order and B-Architecture follows the bidirectional scan order. The
internal memory and the interpelation unit can fulfill the designated scan order in synchronous wav. The performance
results show that both architectures can process in real-time up to the broadcast video format under the current VLSI
technology, and the HDTV video format with the near future VLSI capabilities. Both architectures also achieve nearly
linear speedup over an assumed non-pipelined VLSI architecture. Compared to U-Architecture, B-Architecture reduces
50% of pin count owing to the wraparound memory scheme.

14 3 o @2AAENGTY FHE - 2ZEo7]Ed e |
grjrjold 7y AdE+4
4 g9 dxaar)ed dads we
RS 19978 124 84, AAREE 11998+ 1€ 269



T SRl T 20| s AT T Rl Sém GR A
A i LTS ERGH WG

1. Introduction

Many video coding techniques have been bro
-ught out in order to deliver the huge amount
of video data via the channel or storage of res
~tricted bandwidth. One of the highly promising
and most powerful methods in video coding is
motion compensation (1], 1t uses a motion esti
-mation scheme to reduce the temporal redund
-ancies of ceonsecutive image frames. Motion
compensation can be applied to two areas of
motion—compensated predicticn {MCP) and motion
-compensated interpolation (MCI). MCP is used
in the interframe predictive coding where the
prediction error is used for reconstructing the
original data. Since the prediction error term is
quantized and transmitted at the low bit rate.
motion estimation tries to look for the low error
term instead of the exact motion field. Hence,
& highly accurate motion estimation may not
be crucial in predictive coding (2). On the other
hand, MCI is used in the interframe interpola-
tive coding. The skipped frames at the transm-
itter are recovered by interpolating along mot-i
on trajectories at the receiver. For MCI, highly
accurate estimates are required to give good
image quality since the error terms would cause
highly visible artifacts that are not adjusted
(3].

Our target application is MCI for the following
reasons. Il is a very attractive method of video
coding since it can be combined with the known
coding techniques to reduce the bit rate further.
Many literatures have demonstrated that MCI
is a novel method to recover the skipped frames
than any other simple methods (4]{5) Accurate
motion field is strongly required in MCI and
an accuracy constraint of motion estimation can
be defined by following two conditions: 1) moti
-on veectors should imply the actual motion of
moving objects as exactly as possible rather
than the minimal error term. and 2) a motion

vector should be assigned to a small group of
pixels as possible; ultimately, a unique motion
vector for a pixel [3](6). There is also a real-
time constraint on motion estimation to satisfy
the frame rate for proper presentation. Because
the required frame rate is 30 frames/sec in us-
ual and every other frame should be recovered
by MCI at the worst case, motion estimation for
MC!I should provide the frame rate of 15 frames/
BEC.

There have been various approaches on motion
estimation ! a gradient-hased approach (7). a
feature~based approach [2)}, and a block-match
-ing approach {2]. In video coding area. a block-
matching algorithm (BMA) is widely used due
to the simplicity of hardware implementation
encouraged by the regular data flow, However,
BMA has lhimitations on being directly applied
to MCI since 1) it tends to fall into local mini-
mum regardless of exact motion of moving obje
~cts, and 2) it also fail to give accurate estim-
ates if different parts of a block have various
motions [8)(9].

The AhAferarchical block-matching algorithm
(HBMA){10] is an improved algorithm of BMA
in terms of accuracy because it copes with global
motion of objects as well as local motion. Furt-
her, HEMA generates a dense motion field than
BMA since it eventually gives every pixel a
motien vector (5). HBMA is a sort of multitave
~-red algorithm based on both BMA and a spatial
interpolation: it computes motion vectors by
proceeding from higher layers (coarse grid) to
lower layers (fine grid). HBMA repeatedly app
-lies BMA with various set of parameter values
in order to process a frame That is. pixel data
of a frame should pass all layers to complete
the computation of the frame, It is well establi
~shed that BMA itself is computationally very
complex and a lot of researches on parallel VL
Sl architecture based on systolic array have
endeavored to process BMA in real-time [11]
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Ji2:013,1142015;, Un the other hand, it is net
ced that the computational complexity of HBEM
A is several tens times higher than that of B
MA to process a frame [16]. Therefore, a speci
alized parallel VLS! architecture for HBMA is
required to meet the real-time constraint.
Relatively less work has been done on the
parallel VLS8! architecture for HBMA. In recent,
(17]

architecture

Gupta and et al propose a tree-type
VLSI that

two-layer HBMA in real-time. However. we argue

parallel can  process

that their architecture is not sufficient to process
HBMA the data
dependency of HBMA is not considered. That is.

correctly  since inherent
all layers are processed at once to compute a
motion vector without any refinement of the
vector even though every vector should be
updated along the lower layer goes on.

The data dependency of HBMA resides in the
repeated procedure on various grid of motion
field. A motion vector that is computed at a
layer is updated at the next layer (interlayer
data dependency). Multiple motion vectors are
used to interpolate other motion vectors at a
layer (intralayer data dependency). To resolve
these data dependen- cies the flow of motion
vectors between processing components should be
maintained to be in a particular order. Further.
the flow of motion vectors is tightly dependent on
the way that the frame data are scanned to
successively compute the motion vectors. Based
on the horizontal scan scheme, there are two
possible scan order of an unidirectional scan
order {rightward only) and a bidirectional scan
leftward}. These
parallel architecture to

order {rightward and scan

be
designed in different ways and these are able to
effect the the
complexity of the architecture.

orders allow a

processing performance and
This paper presents two pipelined VLSI arch
“itectures for HBMA that resolve the data de-

pendencies. The pipelined configuration can pa

A
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fiiy seive the dnteriaver data dependeney and
can simply provide the scalabilitv if the number
of layers of HBMA is increased. U-Architecture
is hased on the unidivectional scan order and
B-Architecture iz based on the bidirectional scan
order. The propoesed U-Architecture is an exte-
nded one of our previous work{16] that was de
-signed without consideration of any memory
scheme for frame data. Both of architectures
in this paper are in three-stage pipeline accor-
ding to the given parameters of three-layer
HBMA as special cases. The detailed design of
each component is focused on that the flow of
the intermediate result of motion vectors could
be regular and synchronous. The multi-stage
configuration and the interpolation unit cure
interlayer data dependency. The interpolation
unit including latch mechanism satisfies Intral-
ayer data dependency. The performances of U-
Architecture and B-Architecture are analyzed
in terms of real-time processing aspect. pipeline
processing aspect, and VLS aspect.

2. Data Dependency and Our Approach

2.1, Data Dependency of HBMA

HBMA basically performs Block-Matching Al
—gorithm {BMA} and bilinear interpclation in a
recursive way. In BMA, a reference block of
(nxn) pixels in the present frame is compared
with the candidate blocks within a search aresa
of (n+2p)x{n+2p pixels of the reference
frame. The motion vector corresponding to each
hlock is estimated for the best match. To process
a frame, HBMA of » layers performs BMA with
a different set of parameters { =, #p;, $;} on
each different layer 7, where 1=i<y. #n, and
p; determine the sizes of reference block and
search area. respectively. Hence the possible

maximum value of a vector is 23 i—15; pixels.
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8; is the step size of layver 7 that determines t
he grid size of vector field: i.e., it is the dista
nce hetween pixels where a reference bloek s
made at layer 7. Figure 1 illustrates the conce

pt of the step size.

Figure 2 illustrates the conceptual procedure
of HBMA. A black square denotes the pixel
position on which an estimated vector is given
by BMA. A white square denotes the pixel
positlon on which an interpolated vector is
given by bilinear interplation.

On layer i, a vector is estimated by BMA of
using a large reference block and a large
search area to cope with global motion of
objects. The estimated wvector is given to a
central pixel of the reference block, BMA is
made for every s;th pixe! along horizontal as
well as vertical direction. After completion of
the estimation procedure on layer #, every s;th
pixel has its own estimated vector. For every
s;+1th pixel that does not have its estimated
vectors, an interpolated vector is given by
bilinear interpolation as its initial value.
Completing the procedure of layer 7, every

$;11th pixel has a vector that will alse be

current nexy

Y A

curjlrent lframe

{a) nonoverlapped

used to determine the new coordinates of the
search area for BMA of layer i+ 1 On layver
i+1. BMA is performed again to estimate
another motion vectors to find out local moticn
of objects. For local motion. the sizes of the
reference block and the search area are
reduced. The location of the reference block is

centered at s;:1th pixel, but the location of
the search area is centered at the position
displaced by the given vector value of the
same pixel. The estimated vector at layer i+1
and the given vector at layer i are added to
form an updated vector of the s;.(th pixel.
After bilinear interpolation for every s, sth
pixel is completed, the next layers are repeated
until s;., becomes one. Table ! shows the

given parameters of HBMA for three layers (103,

{Table 1> Parameters of HBMA for three layers

Parameters at layer i 1 2 3

Maximum update displacement p; *7 +3 =+]
Reference block size m, 64 28 12
Step size s, 8 4 2

step size 8§83

N
N
NN

current. frame

(b) overlapped

(Fig. 1) Strategies for arranging two consecutive reference blocks : () in case
of BMA and (1) in case of HBMA based on step size



NET REWME HOAIE

IZme 28 Dol Eepeiy VLS OF7IEIE 1685

o g

o
uL

s

Layer 1 /

ma:zching

interpolating

interpolating

(Fig. 2) Hierarchical block-matching algorithm

Rilinear interpolation on layer 7 gives initial
vectors to the pixels whose vectors are not esti
~mated on layer 7. but will be processed on
layer i+1. In general, bilinear interpolation is
given by d=d ket dpl’v +d; o' +d k"
where d s the vector to be interpolated, d;
is the estimated vector. # is the horizontal off
sot. v is the vertical offset, and 7" is (1— 7).
For instance. in the shadewed region in Figure

2. d; denotes the vector of the pixel at the

black sguare and d is the vector of the pixel
at one of white squares. & (or v} is offset bet

~ween a black square and a white square in ho

r-izontal (or in vertical).

HBMA has two inherent data dependencies °
interlayer data dependency and intralayer data
dependency. Let d{i,x,y) be a motion vector
of the pixel {x.¥) at layer 7. Then the equationof

d(i,x,y)= d{i—1l,x, 3+ ulixy) is acco-

mplished, where w7, x, v} s the updated term

of the motion vector for the pixel {x.¥) at
layer 7. It shows that HBMA has interlayer
data dependency. On the other hand, in

bilinear interpolation. d can not be computed
without d;s of the same layer. It means that

HBMA has intralayer data dependency. The
data dependency of an algorithm is a main
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obstacle in parailel processing and it should be

satisfied In order to process the algorithm

correctly [18],

22 Our Approcach

Our approach is focused on mapping each
layer of HBMA into a separate stage module.
A stage module may be packaged onto an indiv
-idual VLSI module for the scalability of HBMA.

As a result, an #-stage pipeline is obtained as

shown in Figure 3-(a). Figure 3-(b) illustrates
the block diagram of a stage module. It consists
of five major components : an estimation unit
for BMA, a previous memory for search area
data, a current memory for reference bleck data.
an update subblock for add operation of two ve
~ctor values, and an interpolation unit for exec
-uting bilinear interpolation and managing the
intermediate vectors. Based on the general

module, two specific architectures are derived

{0 6)
i 3 s
stage 1 stage 2 cse stage r
L | L—-—--» -—»—J v
intermediate intermediate final
vector vector result
of layer 1 of layer 2 su

(a) block diagram of an »-stage pipeline

vector from
the previous

stulge

{previous|
memory f

sestimationg

0

vector to
the next stage

(b) block diagram of a stage module

(Fig. 3) Qverview of the pipelined architecture
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according 1o the scan order m the tollowing sc

ctions.

3. U-Architecture

U-Architecture follows the unidirectional scan
order and has three stages according to the gi-
ven parameters of HBMA for three layers (Tab
le 1). The unidirectional scan order in scanning
the frame data and generating motion vector
s is shown in Figure 4. All stages of the pipeline
work in fully synchronous way. The flow of the
intermediate vector is also sophisticatedly sche
-duled to support the synchronous operation.
Nevertheless, the transfer delay of frame data
from the external memory for the subsequent
matching would break dewn the fully synchron
ous pipeline. Hence the architecture is designed
to avoid the delay by transferring image data in
advance for the subsequent matching.

3.1. Estimation Unit

The estimation unit of stage ¢ performs
BMA to compute a motion vector for each
reference block according to the following

equations

MAD~= Z 2 | Koy, —Kx+ua, v+ v,ft—1) |
=] Y=

1

V="(1u, ) | minMAD 1, 1)

(Fig. 4) Access a frame in the unidirectional scan order

Cwhere fiaif s g umindnee vabue of a pixed
{x.y) at time ¢ and — p; % u, v<p;. Since BMA
itzell is computationally very demanding, a lot
ol researches have cndeavored to develop the
parallel V1.81 architectures thal can process
BMA in real-time [11. 12. 13, 14, 15). Because
the parallel VI.S[ architectures for BMA is
already abundant, we simply use Komarek and et
al’t systolic architecture as our estimation unit
for its well-defined mapping procedure and
sealability. Figure 5 shows the estimation unit
and the operations of cells. The total clock cycles
required for computing a motion vector at stage
iis Ei=(n+ 1)2p A1 +2n;.

3.2. Internal Memory Unit for Image Data

To compute a motion vector. the estimation
unit requires frame data of a search area and
a reference block. Hence, it accesses the
external previous frame memory for search
area data, and the external current frame
memory for reference block data.

Most data of a search area as well as a
reference block are accessed over and over
again to compute a motion vecter. For
instance. Figure 6-(a) illustrates a search area
of size (m;+2p)° and Figure 6-(b) shows the
access pattern of the systolic array. A
two-digit figure denotcs a relative position of a
pixel in the search area and a dashed box
denotes a group of candidate blocks that are
used for a matching. From Figure 6-(a) and
-, we investigated the features of data
access pattern as follows: 1} almost all of the
pixels are accessed ®; times to compute a
motion vector, where the size of a reference
block 1s ®;*n;. 2) multiple systolic cells of
the estimation unit do simultaneously access
the frame memory, 3} data access on a
horizontal line is skewed along the time line.
4) at most one pixel is accessed from a
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(Fig. 5) Systolic array for the full-search BMA (in case of u,=3,P,=2)[11]

vertical line of frame data at a time, and 5)
n; contiguous pixels are sequentially accessed

from a vertical line. irrespective of search area
data or reference block data.

Using the on—chip internal memory can satisfy
the first two requirements. Making the internal
memories are of multi-module organization can
satisfy the last three requirements, Even though
some initial delays per data block are possible,
double buffering can cure it,

The #n-module memory organization is illust
-rated in Figure 7. It consists of » dual-port
RAM modules and thus it has an input port
and » output ports. It has an input logic and
»n output logics. The input logic selects an app
-ropriate module where the input pixel value
is stored according to its relative position with
in the search area or the reference block. Each

module has its own output logic in order to ge
-nerate an offset in the module independently
from other modules. In this way, # pixels that
are allocated in » separate modules can be si-
multaneously accessed. The function of the out
put logic is based on modular operation and in

—-crement operation.

o
o
—
oY

vertical

F.

horizontal

{a)



time
elapsed

(b
(Fig. B) Data access pattern:(a) a search area where

n;=3 and p;=2 and (b) data access
pattern of systolic array

Twao types of the internal multimodule memories
are in a stage module @ the Previous Memory
(PM) and the Current Memory (CM). For the
sake of legibility. we will consider only search

area data and PM w.thout any remark [rom now
on. The sizes of PM and CM are (n;+ 2007 pi
-xels and n? pixels. respectively, where the
size of a search area is {n,+2p,)° pixels and
that of a reference block is n? pixels. Although

only one unit of PM or CM of those sizes are
required to compute a motion vector. it is insu
~fficient to store the frame data to be transfer
red in advance for the next search area or
the next reference block. In the worst case at
the start of a new block line, a whole search
area for reference block) should be transferred
in advance. That is, in Figure 4, all pixels of
the search area at B should be transferred dur
“ing the search area at A is being processed
since there are no overiapped block data. Ther
-efore. a double buffering scheme is introduced
and then there are a couple of PMs (PM-A and
PM-B) and a couple of CMs (CM-A and CM-
B) in a stage module. For instance. frame data
for the next search area is being transferred
to PM-B while frame data in PM-A is being pr

Y

input logic

vy

'

NHIETEHIRE
output o a o 2leeel 2
logic o o c o c
o - o s [
o 0y ) o o
O — N [¥9] ’.IIS
W
v v ! ]
_i 1 read address
L 4 ¥ v y %00

(Fig. 7) n-module internal memory
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acessed, and vice versa,

Figure & iilustrates the block diagram of a
stage module of U-Architecture that is focused on
Each
receives two intermediate vectors

stage module
(vi vZ)
from the previous stage module and supplies

the memory configuration.

and

another two intermediate vectors (v and v2) to

the next stage module. v/ is the intermediate

vector Lo be processed in the stage. Tt determines
the addresses of internal memories (adri and

estimation unit. v2 is the intermediate vector
used to transfer the next search area data and
reference block data in advance. It determines
the address of external frame memories : FOM
address for the external current frame memory.
and EPM address for the external previous frame
memory. Data from the external previous frame
memory via PM port are stored in one of PMs
that is used for pre-read memory.

There are two memory-to-EU switches : Fl-s
witch and CM-switch. These need only 2-to-1

adr?) and is updated by the result of the switching functions from two memory units to
vZ from vl from
the previous the previous
stﬁge PM port stage
F
DMUX sel
CM adrs < external
address
iR adrs < unit previous previous
memory memory
A B
adr2 —» e adr?
adrl P
— I sel PM-switch sel 2dr?
I L ' ¥ L adri
I current = sel
” memory 2l ] ees ] T
] .
cH port Lyl A o[] sestimations internal
& z * unit e address
current ot urit
memory S [ o= O
B v
i update J<
)
interpolatier
unit
L y
v2/ vl
to the next stage

(Fig. 8) Block diagram of a stage module of U-Architecture



a processing unit. Thus PM-switch is an array
of & Z-to-1 mulliplexors and it determines that
one of PM-A and PM-B is accessed by the esti
mation unit at an instance. where £ is the
number of read ports of a PM. k= (n;+2p)).
For CM-switch, % is #m;. The control signal,

sel, simultaneously controls the switching of
all multiplexors,

33. Interpoation Unit

Besides performing bilinear interpolation, the
interpolation unit provides a mechanism to
supply the results of a stage to the next stage at
correct time and another mechanism to resolve
intralayer  data  dependency  that  bilinear
interpolation would cause.

With the pipelined architecture, interlaver
data dependency is resolved so naturally since
the vectors are updated _by simply passing
through the pipeline. It implies that the
intermediate results of the vectors at one stage
should be precisely arranged to be updated at
the next stage. Because the pipeline operates
in fully synchronous way, the data flow fie.,

the flow of intermediate vectors) should keep a

{ SR BUZEE QT OIS VLS SHFIEH /0

particular order. Furthermore, the number of
the vectors to be processed at stage ¢ is four
times as many as that of generated ones at
stage 7—1 since the density of vector field at

layer ¢ is four times as many. That is, the

by the step size s; and s."—"—%st_l in both
vertical and horizontal direction. For these
reagons. an interpolation unit consists of a
bilinear interpolator. an input latch mechan-
ism, and an output latch mechanism.

3.3.1. Bilinear Interpolator
The general bilinear interpolation can be

simplified to Figure 9 from s,:—%sﬂ. The black

squares denote the estimated vecters and the
white squares denote the interpolated vectors.
Among all possible interpolated vectors., only

d,. ds.

these make it both efficient and systematic to

and aﬂ are interpolated since

implement than any other combinations.

Rilinear interpolation raises data depen—

dencies that are obstacles against pipelined
processing. One is, as shown in Figure 9, four

unidirectional
dy acan order

———— iy
-
-

d 4,
Ly .
T/
the newmost vector

(Fig. 9) Simpified bifinear interpolation :  do=4(dy+d), do— (@ + do+du+dy) aNd  do=(d, +dy)
2 1 2



gLt nElen L 1 TRETY e
e MR L IEDDD = Minr M S e

— 1 1 1 i
M oot
o —— S
e u TR R &
d ] Voo
& R
f i t H
[ o
d i H : 3
] ! oo
ds | (1] o e e P I
i |

SR : Shifter {shift right) 8 : delay
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estimated  vectors  lying over two lines are
required for hilinear interpolation. The other is
that three interpolated vectors, generated after
completion of bilinear interpolation. are spread
over two lines. These data access pattern would
cause the data flow over the whole pipeline
stages to be wrregular. llence the interpolation
unit is designed to alleviate these problems.

Figure 10 shows the bilinear interpolator of
U-Architecture that computes aa, ab, and
d. at once. It works whenever the newmost
vector, d,. in the unidirectional scan order is

available from the estimation unit. Recall that

the estimation unit computes the motion vectors
by scanning a {rame in the unidirectional scan
order. The outputs of the interpolator are clas
-sified into two groups according to whether
they are on the same horizontal line of frame

or not.

3.3.2. Latch Mechanism

The latch mechanism regulates the flow of
intermediate results of vectors. The relation-
ship of the bilinear interpclator and the latch
mechanism of stage I is shown in Figure 11.

The input latches take role of 1) supplying
four inputs to the bilinear interpolator at once

--------- - IPLTL

. crl
v ¥
“:sm "
- SW2 | =P 2
/_i swi[—»

CLK |

P
J’ | swl > vl
¢ I T >
ctl .
ctl2 < LACL
? CLK j+;

(Fig. 11) Latch mechanism of stage / :

input latches (R

. R2, R3, LA}, output latches (LAZ, LA3),

latch-array controlier (LAG ). and interpolator (PLT )



by four separate latches, 2) ensuring no loss
of already estimated vectors by LAl of size
N,/s,—1 vectors, where N, is the number of
pixels in a line of frame and s; is the step
gize, and 3) keeping them on the proper input
ports of the bilinear interpclator at correct
lime by configuring all input latches in linear
connection.

The output latches store the results of the

interpolator in line-by-line basis. There are

{wo output latches of LAZ and LAS3 that are

first-in-first-out latch arrays. They are conmne-
cted to the respective outpuf ports of the inter

-polator: d, and d, are forwarded to LA2

during d, and d, are forwarded to LA3. In
this way. the flow of vectors to the next stage
potentially keeps the unidirectional scan order.
The sizes of LA2 and LA3 arve (N,/s,.,+1)
vectors and (N,/2s;, 1) vectors, respectively.
The sizes are $o minimal that they would neit

her overflow nor underflow. The function table
¢ for the switches are defined in Table 2.

{Tabie 2> Function tables for the switches

ctl 1 0

o B
- B8

ctll 1 0

Bl 5
w | O 9

The latch-array controller (LAC) takes role
of supplying the results of a stage to the next
stage in the unidirectional scan order at correct

et e e

time. It generates two control gignals - cii ang
ct12. LAC exciusively opens the output ends of
output latches: it keeps one of output latches
heing opened during the vectors on a horizontal
line are exhausted. The initial values of both
control signals arc s. Therefore, the synchron
-ous data flow in the unidirectional scan order
along the whole pipeline stages is achieved. The
input latches use the clock CLK;. while the int

-prplator and the output latches use the clock
CLK,.,. CLK,., is four times faster than

CLK; and the clock subsystem is derived In

pur previous work (167

4. B-Architecture

This section presents the other three-tage
pipelined VLSI architecture that is referred to
B-Architecture. B-Architecture is based on the
bidirectional scan order. Figure 12 illustrates
that a frame is accessed in the bidirectional

scan order.

<

)

(Fig. 12} Access a frame in the bidirectional scan order

4.1, Wraparound Internal Memory Unit
With the bidirectional scan order, two blocks
of frame data for consecutive estimations are

always overlapped. From Figure 12, search are
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as (o1 relerence blocks) at region A and at reg
-ion I3 are overlapped. Region C and region D
are overlapped even though the scan line is ¢h
-anged to vertical direction. This fact means
that a considerable portion of two consecutive
frame data blocks can be reused without retra-
nsfer. The fundamental structures of the curre
-nt memory (CM) and the previous memory
(PM} are the #n-module memory organizations

of U-Architecture as shown in Figure 7.

Furthermore, the memory units of B-Archite
-cture have the wraparound structure in order
to fully utilize the feature of data overlapping.
The wraparcund memory structure means that
1) the topmost cell of a module is logically adj
-acent to the bottommost cell of the module,
and 2) the left most module is logically adjacent
to the rightmost module. Hence two consecutive
data blocks can be allocated in a memory unit
without explicit double buffering as in U-Archi
-tecture. Figure 13 illustrates a data block is
allocated in a wraparound manner. A data block
A is already allocated in a memory unit and
being used by the estimation unit (Figure 13-
{a)). When the other data block B that is disp
~laced by the motion vector is transferred in

advance, only some part of data (B1. B2, and
B3) need to be transferred since a part of data
(B4) do already exist (Figure 13-(b)). Because
B1. B2, and B3 are out of boundary of the me
-mory module. they are allocated in a wrapar-
ound way (Figure 13-(¢c)). The horizontal wra-
paround scheme can be achieved by simple mo-
dular operation of the module selection logic of
the address generator. The vertical wraparound
scheme is the addressing matter localized within
the output logic of a module.

The size of a memory module can be gracefu
-lly reduced than explicit double buffering by
the wraparound scheme. Let the size of a data
block {(a search area or a reference block) be
(mxm) pixels. Let the size of a memory unit
{PM or CM} be (#x#n) bytes, where #n)m, To

get the » term, we should obtain (#—m) term
that is the possible maximum offset between
two adjacent data blocks. Figure 14 shows three
eonsecutive search areas for pixel locations of
X, ¥, and z. After completion of layer 71—1, x
and z have the estimated vectors, D1 and D3,
respectively. which are incidentally completely
opposite from each other. ¥ has an interpolate
d vector from them that is a zero vector. The

7

B3 //j

module O(a> modale n-1

(b} (c)

(Flg. 13) Wraparound aliocation scheme : (a) data block A is allocated already,
(b) before the allocation of block B, and (c) after the wraparound allocation of block B



locations of A, B, and C are displaced from x.
y. and z by their intermediate vectors, respect
“ively. Then. the offset term of (n— m) is the
offset between A and B. As shown in Figure 14,
the horizontal offset term is (p; | +s,). where
fi-; e the possible maximum displacement of
a motion vector at layer 7— 1 and s; is the step

size at layer 7. The vertical offset term is also
(p;-1+s,) when the processing direction is ver
-tical (as in case of C and D in Figure 12). The
same result is obtained for the reference block.
Therefore. a PM of size (m;+2p+ si+p; 1)*
pixels is enough for two consecutive search are

as at stage 7. Similarly. the required size

of CM for two consecutive reference blocks is

(n,+ s+ p._1)° pixels. where the size of a ref-

P |

oA v C
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erence block is #¢ pixels.

The connection between the

wraparound

of

memory

features
unit and the estimation
unit are as follows.

e The number of the output ports of PM is
a={(n+2p~+ s+ p; ). while the number

of the input ports of the estimation unit
A= (n,;+2p).

That is. only A output ports of PM are

for search area data is

enabled among a output ports at a time.
llach of PM
connected to a distinct input port of the

enabled  output port is

estimation unit | one-fo-one connection.
of the estimation unit is
(h+ «) mod

An input port

connected to an output port,

B. where £ 13 a port id of PM and « is
. Ni+2Pi . SirPa .
3
search area for Al
search area for B

e
A A
N
: search area for C
Z

processing direction

(Fig. 14) Possible maximum offset between two adjacent search areas at layer /
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the hurizontal offset between the origins
nf the currvent search area and that of the
next search area ° permutation.

e The connection may be dynamically changed
whenever the processing on a search area is
completed.

Hence. the memory-to-EU switch should sup
port permutation, one-to-one connection, the
dynamic switching. Although the crossbar net
work and the Multistage Generalized Cube Net
-work (MGCN} [19] satisly these requirements,
axa MGUN 1s used in this paper for the sake
of hardware cost. An #xXn MGCN requires only

4 wlogn switch elements. Figure 15 depicts a

8x 8 modifiled MGCN. It is slightly different
from the original MGCN in the respect of the
control signal on every stage. The control signal
arbitrates the switch elements in a stage for
synchronous operation of the switch network in
cooperating with the estimation unit,

Figure 16 illustrates the block diagram of a
stage module of B-Architecture. There are two
memory-to-EU switches of PM-switch and CM~

switch for the paths of search area data and
reference block data, respectively. PM-switch

of stage 7 needs —é—z&iog& switch elements, where
A=wn;+2p+ s+ p;-i. For CM-switch, A=n,+
s;+ pi;—. The blocks of P and  are the contro

I logics to arbitrate each stage of the memory-
to~EU switches.

42 Interpoiation Unit

Since the motion vectors are computed by
accessing frame data in the bidirectional scan
order, the flow of the intermediate vectors
between stages should follow the order. However,
unlike the unidirectional scan order, the results
of bilinear interpolation build up a new line of
the interpolated vectors between two lines of the

estimated vectors from the fact of S,‘+]=“%“S,'.

The new line of the interpolated vectors would
change the direction of existing flow of the
estimated vectors as shown in Figure 17. Hence
the interpolation unit should be designed to
keep the whole flow of vectors being in the
bidirectional scan order even though the new

interpolated vectors are generated.

A 4

N
-y

|

.

s
:

memory
unit
L\ ]
ﬂ)j/l
/2\

estimation
unit

(Fig. 15) Memory-to-EU switch structure :-8x8 Modified MGCN
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.41 Bilinear Interpolator

There arc two cases in seguencing the cutput
vectors depending on whether the newmost vec
tor ig on the rightward scan line or not. In
case of the rightward line. d, should be in pr
aa

in accordance for the changed bidirectional scan

-ior to d,.. and ds should be in prior to

order (Figure 18-(a}). In case of the leftward
line, ?ic should be in prior to ab, and d,
should be in prior to d. as shown in Figure

18-(h). These requirements on the output sequ

. Vi oo = S HES SR S
e e AP ilel i ‘«:m,:_xa of the bLilinear int

However. in case of the

da

~rpolator of Figure 19
leftward line. we can see that the order of
and d», of Figure 19-(b) is conflict with the
changed bidirectional scan order of Figure 18-
(b). This matter is not simply cured by the bil

-inear interplator and it will be done by the
output latch mechanism.

4.2.2. Latch Mechanism
The functionality of the input latch is ident-

ical to that of U-Architecture © it provides the

v2 from vl from
the previous the previous
stage PM port Stage
| 1
“ external
address
< unit previcus
adrZr» memory
sext [J[TI[]] 1]
i PM-switch ggi:]mqselz
— A . adrl adr2
1z |0 e O p ¢
CM port——| current @ [, testimations 1arzjt;rrensasi
memory (o E unit .
1 unit
S o) D 1) D % +
o)
[) I sell sel?
t
interpoiatio
unit
¥ v
v2/ vf

£o the next stage

(Fig. 16) Block diagram of & stage module of B-Architecture



G SETIT U A =BT WA W/ 98 a

' g p *
i ' 3 i
ia D e '
o " y y X
IofTuavd # t -
I
Ly y

.

!
rgenany t » L .
: X
. '

‘ ;
Tafruary e T "
X
— y
1 » 1 N

{a) {b)

(Fig. 17) The order of the vector flow is changed by bilin
-ear interpolation : (a) before bilinear inter-
polation, and {b) after bilinear interpoiation

correct estimated vectors to the bilinear interp
-olator at correct time. However. unlike U-Are
~hitecture, the direction of vector flow on a
horizontal line is periodically reversed owing
to the bidirectional scan order.. Since the esti-
mated vectors are on two horizontal lines. two
Last-In-First-Out (LIFO) structures are required
as the input latch mechanism. The input latch
mechanism has two sets of latches (Figure 20).
Kach group has a latch (RA or RB) and a LIF

O stack (ISA or ISB) of size N,/s;—1 vectors,
where N,/s; is the number of the estimated
vectors on a line of a frame at laver 7. The fu
ctions of the switches are shown in Table 3.
The initial value of ¢t/ is 0 and it is toggled

whenever « mod(N,/s;) becomes 0. where «

is the accumulated number of vectors supplied
by the estimation unit.

The output latches store the results of the
bilinear interpolator and provide them to the
next stage in line by line based on the
bidirectional scan order. Figure 21 shows the
output latch mechanism. The outputs of the
bilinear interpolator are already arranged in
the bidirectional scan order except only one
case. That is, the bilinear interpolator supplies
its outputs in the reverse bidirectional scan
order only when it generates the outputs to
the output port r1 during the newmost vector
is on the leftward line as described in Section
4.2.1. Hence 0Q1 should toggle its work from
FIFO manner to LIFO manner, and vice versa.
Preserving neither underflow nor overflow, the

size of OQ1 is N,/s,.; vectors and the size of

0Q2 is Ny/s;+ +1 vectors.

5. Performance Results

5.1, Real-Time Processing Aspect

The major objective of this paper is to
design a parallel VLSI architecture that can
process HBMA in real-time. The feasibility of
real-time processing by an architecture is
analyzed by comparing the required cycle time
to process a frame by the architecture with
the given cycle time to a frame from the

<Table 3> Function table for switches of the input tatch mechanism

ctl S0

sz |a(}) B@

A
rightward 0 ﬁ%

iy [A ds
(Cl(; BECM J' ?

A
leftward 1 ga
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the newmest vector

(b) the newmost vector on the leftward line

(Figure 18) Bilinear interpolation and the changed bidirectional scan order

real-time constraint. the latency of stage . I;. is the sum of the
Let T be the required cycle time to process fill-up delay of all of the input latches and the
a frame of size N XN, pixels by a pipelined first activated one of two output latch arrays,

architecture. To evaluate T, we first examine The pr‘ocess‘mg of a frame can be finished
o i o when the final result is generated f{rom the
the critical path of the architecture. A stage )
. ) ] last stage. Hence, we obtain
begins its processing only after the first result

of the previous stage would be available. Thus. T,= i:,F,—i— G (n
3
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SR : Shifter (shift right} ® : latch

(a) block diagram of the bilinear interpolator

1 | 1
. ! ;
rightward . d; 4., | :
) | \ 1
i
2 E do  ds
| ; : :
! | | H
t . ) i
leftward 1 d; q. | |
Co
r2 : de de :
! ! ! !

(b) timing chart of the outputs

(Fig. 19) The bilinear interpolator of B-Architecture

bilinear
interpolator

d;

dy

CLKj -

{Fig. 20} The input latch mechanism of stage /

. where G is the duration to generate all results
from the last stage. F; 1s (N,/s;+2)¢
+2(N,/2s;+1+ Dty and (N, /5;+2)t; + 2N,/
$;+11t 1)t and for U-Architecture and B-Arc-
hitecture, respectively. G is NNt for both
architectures.

Let f,ue be the required frame rate for
proper animation of motion video. l.et k&, be

the frame skipping rate and it is given by 2 as

the worst case. Then real-time constraint on
Ty is given by

R yate _

7}*‘_};j; (2)

By applying various video formats to Lg.

(2), the required period $t$ of the base clock

is given by Table 4. Now the relation of

t=1,/18 is accomplished from the derivation of

the clock subsystem. where ¢ is the period of

the base clock. The table shows both architect-
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{Fig. 21) The output latch mechanism of stage /

ures can achieve real~time processing perform-
ance for up to the broadcast video format under
the current VLS] technology. For HDTV format,
the required clock speed is 2.7 ns that can be
achieved VLSI technology about to be available

(201.

5.2. Pipeline Processing Aspect

The speedup factor is evaluated for the pipe
-line processing performance. We assume a non
-pipelined architecture that has only a single
stage of our architecture and operates with the
base clock of ours. The total cycle time of the
non-pipelined architecture for a frame is given
T ™ 200 Fov Ny NJsT - (249NN

< HOH fitf

hy

Therefore. the speedup factor of the pipelined

architecture over the non-pipelined architecture

ig given by

m&mew
I

Table 5 shows that both of ours achieve

S i = (3)

nearly linear speedup from the fact that the
k that a &

-stage pipelined architecture can achieve.

theoretical maximum speedup 1S

5.3. VLS| Aspect

The hardware cust in terms of the pin count
and the gate count for the proposed architectu
—res is evaluated. The pin count is determined
hy the function of the reguired processing time
of given data and the required transfer time of

the data. The necessary amount of data (a4 sea

{Table 4> Comparison of real-time processing performances

video format Frate B rate U Arch  B-Arch

(N XNy (Hz) {ns) (ns)
video conference 352x 288 30 2 34.41 3386
broadcast video 5]2)(480 30 2 14.46 14.30
HDTV 1408x960 30 2 270 264
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(Table 5> Comparison of speedup factors

video format U-Arch B-Arch
video conference 256 252
broadcast video 261 2.68
HDTV 268 267

Teh area or a reference block) should be comp
“letely transferred to the internal memory before
it begins to process them in order to maximize
the efficiency of pipeline and not to break the
fully synchronous pipeline.

In analysis of the pin count, following
assumptions are made ' 1} the access time of
the external memory and the access time of
the internal memory are equal to each other.
2) only one pixel is transferred in a clock and
thus the transfer time is equal to the amount
of transferred data, and 3) the access times of
the external memory and the internal memory
are equal to the base clock period. These
assumptions are reasonable since the access
time of 3.5 ns is about to be commercially
available (21].

Let «; and p; be the transfer time of a

search area and the transfer time of a reference
block, respectively. In U-Architecture, even
though the amount of data to be transferred
could be smaller except at the start of a new
block line, the worst case should be taken into
account In determining the pir count. Thus «;

=(n,4+2p)% and p;=n? for U-Architecture
since a whole data block should be transferred.

For B-Architecture, only additional frame data
are required to be transferred. Thus we obtain

ki=(s;+p;~))

(nit2pi—pi D+ i)+ pio(n; +2p) and 0;
=(s;+p— X mi+p,- )+ pi_ym; at the worst
case.

Then the pin count of input port for a

search area at stage 7, 7, iz given by
£

(zi:l'fi‘l'xs (4)

.where E; is the clock cycles for computing a

motion vector in Section 3.1 and 8 bits/pixel
for a luminance signal.
Similarly, the pin count of input port for a

reference block at stage i, R, . Is given by

R, = [ -% ] <8 (5)

By applying the parameters of HBMA (Table
1) to Eq. (4) and Eq. (5), the required pin
count for only data input is obtained as shown
in Table 6. By comparing the pin counts for
the data input ports. B-Architecture reduces
about 50% of pins in compared to that of
U-Architecture,

The evaluation of the gate count is based on
the equivalent gate occupation of CMOS techno
“logy (Table 7) (22). Table 8 shows the gate
count needed in each component of U-Architec
-ture and Table 9 illustrates the result of B-
Architecture. The gate counts of both architect
—ures are compared in Table 10. For the on-
chip memories, B-Architecture requires around
30% less than U-Architecture. However. this
gain in memory size is achieved at the cost of
the memory-to-EU switch. To sum up all comp
-onents, B-Architecture requires about 10% less
gates than U-Architecture. Even though the pr
oposed architectures are too complex to implem
ent with the current VLSI technology, it is exp



geted thal the compiexity val be achieved near

future.

6. Conclusion

This paper proposes a set of pipelined VLSI
arcinleciures lo process HBMA In real-time.
We look for the inherent data dependencies of
HBMA : the interlaver data dependency and
the intralayer data dependency. Based on two

horizontal scan schemes. we investigate how
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processing  performance  and  the  hardware
complexity. Two specific three-stage architec
tures are designed according to the applied
scan order. U-Architecture is based on the
unidirectional scan order and B-Architecture is
based on the bidirectional scan order. The
scan order affects the designs of the bilinear
interpolator. the latch mechanism. and the
internal mémory.

»The performance results show that both

{Table 6> Comparison of the pin counts

stage

{ 1 2 3 total

port for search area

48 40 32

Li~Arch port for reference block 32 32 24
82 72 5B 208

port for search area 24 16

B-Arch port for reference block 8 16 16

16 40 3 28

(Table 7> Equivalent gate occupation for CMOS

technology

Ttern (1-bat)

Equivalent gates

adder/subtractor
inverter
comparator
2x1 MUX
RAM
latch
up/down shifter

13
]

[S2 RN SRS |

o

{Table 8> Gate evaluation for U-Architecture

stage module i | 1 2 3 subtotal
estimation unit | 421712 .09 | 15806 523,664
on-chip memaory 651,020 124,160 - 21,760 797,440
Np=2838 5,904 11,664 23,184 40,752
latch Np=480 9,744 19,344 38,544 67,632
Np=960 19,344 38,544 76,944 134,832
Interpolator 768 768 768 2,304
memory-to-EU swilch 3.408 1,488 624 5,620
Np=2848 1,083,312 224,176 62,192 1,369,680
total Np=430 1,087,152 231,856 77,552 1,396,560
Np=960 1,096,752 251,056 115,952 1,463,760
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{Table 9> Gate evaluation for B-Architecture

 sagemodule i | 1 2 3 | subtotal
estimation unit 421,712 ) 36,096 15,856 523,664
on-chip memory 402,560 113,472 20,800 536,832
Np=2838 9,032 14,792 29,192 53,016
latch Np=480 17,672 29,192 57992 104,856
Np=8960 34,862 57,992 115592 208,448
interpolator 976 976 976 2,928
memory-to-EU switch 56,824 25837 8,562 01,223
Np=288 891,104 241,173 75,386 1,207,663
total Np=480 889,744 255573 104,186 1,259,503
Np=960 916,934 284,373 161,786 1,363,093
(Table 10> Comparison of the gate counts
U-Arch B-Arch B-Arch/U~-Arch
estimation unit 523,664 523,664 1.0
on-chip memory 797,440 536,832 0.673
Np=288 40,752 53,016 1.301
latch Np=480 67,632 104,856 1.550
Np=960 134,832 208,446 1.546
interpolator 2,304 2,928 1.271
memoryv—to—-EU switch 5,520 91,223 16.526
Np=288 1,369,680 1,207,663 0.882
total Np=480 1,396,560 1,259,503 0.902
Np=960 1,463,760 1,363,093 0931

architectures achieve the real-time processing
performance for the broadcast video format:
U-Architecture required the clock speed of
14.46 ns and B-Architecture required the clock
speed of 14.30 ns. These clock speeds are
available under the current VLSI technology.
For the HDTV video format. U-Architecture
and B-Architecture required the clock speed
that can be achieved with the near future
VL3I technology. In the pipeline processing
aspect, both architectures achieve nearly linear
non-pipelined

speedup over an assumed

architecture. In the VLSI aspect, compared to

U-Architecture., B-Architecture saves about
50% of pin count for the data input port due
to the wraparound memory scheme at the cost
of the memory-to-PE switch.
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4] F-ok : Processor Architectures, Parallel Pro-
cessing, Dataflow Machines, Vision
Architectures, Microarchitectures and
Microprogramming



