alysis.

Agrawal and Detrol5) presented the imp
lementation of an extension to Celentano’s
incremantal parsing algorithm that allews
epsilon rules in the grammar. The incremental
compiler used in Magpie is similar in structure
to a conventional compiler(6]. Their algorithms
are 100 expensive in time and storage requi-
rement to be of practical use.

Yeh(7) devised an incremental shift-reduce
parsing algorithm which allows a single modi-
fication in the original input. Yeh and Kastens
(8] presented an incremental parsing algorit-
hm which allows not only multiple modifica-
tions in the original input, but also epsilon
production rules in the underlying LR(1)
grammar.

Snelting{10) described a modification to LR
parsers which allows processing of incom-
plete input. while at the same time building
of correct abstract syntax trees. Substring
recognition can be useful for noncorrecting
syntax error recovery and for incremental
parsing(11].

Another application for substring parsing is
incremental parsing. An incremental parser
builds the parse tree for the current version of
its input text while it reuses the parse tree
generated for the previous version as mueh as
possible.

Beetem presented the algorithms and techn-
iques used for incremental scanning and parsi~
ng of the Galaxy languagel12).

Larchevéquef13] proposed the concept of a
well-formed list of threaded trees developed in
the earlier works on incremental parsing.

We discuss the conventional incremental
parsing algorithms which are too expensive in
time and memory space, and we present the
incremental LR parsing algorithm which is
more efficient than the previous ones.

LHOHAE HIS S SN MTY iyl 1686

2. Review of LR parser

The basic definitions, notations and conve-
ntions of [1]) are used in the followings.

Let G=(N.ZP.S be an augmented LR gram-
mar with N the set of nonterminal symbols, 5
the set of terminal symbols, Ps«the set of prod-
uction rules, and § the start symbol,

LR parser can be represented by a set of
states. One state, namely S; is distinguished
as the initial state. Fach state consists of a
pair of function, called the action function
(denoted by action), and the goto function
(denoted by goto).

For each state,

(1) action maps F U $ to ({shift. accept,

reduce, error}

{2) goto maps N to. {a set of states} Y

{error}.

The parsing can be represented by a seq-
uence of configurations. )

A configuration 1l of an LR parser is a pair
(S, x$).

where,

S= 8¢ 8 ... Sp is the stack content with Sm
on the top.

x$ is the unexpended input.

Given a LR grammar G and an LR parser
for G, for each sentence zeL(G), there is a uni-
que sequence of configuration, called a parse
sequence =00, I, such that ly= (S;.z8).

M,=(SuS:,$), where S is the initial state, S
1s the state such that action(S¢$)=accept. I+
N Vi, O<isn,

Example 1. Let G be the following grammar.
(1) E-E-~T

2) E—-T

3) T>TxF

(4) T—>F

5 F~(E)

6) F—n



1867 SI=ENEM @S =FR UL HODise

The LR parsing table for grammar  is sho
wn in (Fig. 1).

STATE action goto il

n - * { } 5] E T F

| sH 84 1 2 3

L 56 ace

2 r2  sf 2 r2

3 rd 14 4 14

4 85 sd 3 2 3

b r6 16 6 b

6 sh sd 9 3

7 85 34 10

g sb sl

9 i s7 rl ri

10 rd rd rd 13

11 R 7] 5 b

(Fig. 1) LR parsing table for G

3. An incremental parsing

3.1 The basic data structure

Celentanc({4] proposed the incremental par-
ging as follows.

lLet z=xwy be a string generated by a
grammar &, and let z'=xw’y be the string
modified by substituting w" for w (w#w, 2z’
L{®). Let the parse sequence M=, T; be
that associated with z, and the parse sequence
=My ..l be that associated with z°,
where My=1(Se.28), Mo =(Ss.2’$), Ma=M," =(SeSs,
$.

In terms of the corresponding parse trees,

the purpose of the incremental parsing algo-

rithm is to find the smallest subtree of the
parse tree for z which must be reshaped In
order to obtain the parse tree for z' (3],

It is clear that the terminal frontier of this
subtree must (nclude the string w: in general a
reanalysis of some part of v needs to be per-
formed. while the analysis up to the complete
scanning of x remains unchanged (Fig. 2).

(Fig. 2) Parse Tree 7z and 7

In terms of the parse sequences this 13
equivalent to finding which part of I must be
recomputed to obtain II'.

Given the two parse sequences [l and 1.
there are two indices p and q in the following

algorithm:
() If 1={(5:.2%) and I’ =(S/ .2’ $) then Si=5
¥i, O<isp

(2) Mhs=Npy ¥, Osjsq
(3} no other indices p’>p and g’ g can sat-
isfy the conditions (1) and (2).
The condition (1) and (2} would be too exp-
ensive to compute and store the parse seque-
nce of configuration.

Example 2. Consider the grammar & and the

(n-n). We take x=(n-n). y=(n-n), w=- and w’
=% The parse sequence [l and f"are shown in
(Fig. 3). We have p=28 and q=27. in fact
Moe=Mby’, p and q are the largest values which
satisfy the condition (1) and (2). Thus. the
above algorithm requires 59 parsing steps.

stack R sequence stack mpuE sequience
S0 (n-n-(o-ni$ | o S0 (m-np(n-n)$ | T
3054 ap-n-n$ | T 05 n-n)*(n-n$ | 1y
S5 -n-ow$ | T S50 ol (n-m$ | I
0545 -W-n-a)$ § Iz Sosi8 —ep(n-nif | [T
o5 - | o S8 ~ilp)$ § T
SUa88 -hw$ | s 5545 -ni*(nen)$ | T
SoSusess al--n)$ [ s OS85 ni(n-m$ | 1’
084885655 >-n-n)$ | I 05456555 J+(n-mi$ | I
SOR8Ss )t | Dk S0%445650 Ho-n$ | T




Y- Cie B Oy || sospmses in-pi® | [
Sei pin-ni$ | My SoS4SE im0 | Mo’
5084851 S | My 845851 sn-n)$ | 1.7
o ol | By S sarndd | e
o -in-n$ | 052 i | M’
S8 ~n6i$ | T oS8 o | Iy
505156 o | Ty SO wea®
0515654 nn$ | M 057575455 -ul$ | T’
50156845 -m$ | D SIS - | 1Ly
POELrY - | Ma SUSAS/S48: S| M
SRS -ni$ | Oy P Sseees | e
051565484 0% | Oy SOSPS7S49656 n$ | Ny
S S g | T SESTETSSAS: 5|
e 5} Re ST %1
SOSHSA3456S % Nz ORISR 15y My
5051565455658 % | e SSEESy | M
SOS16SEH %) s SOSISTMSESH )
S84 $| s S0 § {0
oS53 $| On 087 EAR
$0515A% EARLEY S08: $ | ' =Tl
051 | Me J

(Fig. 3) Parse sequences for G

32 The tree structure

An incremental parsing algorithm requires
that the result of the preceding analysis of the
sentence be retained(4).

Celentano(4) proposed the following tree
structure to save the parse sequence.

The stack is represented by a tree, whose
nodes are labeled with states, the root con-
tains the initial state Sp. The input is repr-
esented by a sequence of tokens. Associated
with each token is an ordered list of poin-
ters that point to the nodes of the tree.

Fach pointer represents a configuration.
The input token to which the pointer is
attached is the beginning of the unexpended
input. The stack component is represented
by the path through the tree from the root
to the node pointed.

Algorithm 1. A parsing step.

input © a tree structure and an input list z
output - the same structure updated to include
the next configuration
method : let TOP be reference to node Q of the
tree such that the path from the root to Q
spells out the actual stack.

Let i be a reference to the incoming symbol
z in the input sequence. the actual configura-

L AE 2o e BAMA T 1663

tion is then given by the last poinier in the
list attached to .

The cases action{S.z;}=error or accept are
obvious: we shall illustrate the shift and red-
uce cases:

case 11 aetion(S.z:) =shift

Let 8 =goto(8,z) the next state.
Look at the sons of the node Q'
if there is a son labeled S, then let
TOP point to it, otherwise append a
new son @ to Q. and let TOP point
to it: advance 1 to the next input
symbol, and associate with this new
symbol zi a pointer to the same
node referenced by TOP.

case 2 action(S.zi)=reduce p, and produc-

tion p is A—a. Back up on the tree
from the node Qfal levels, call @
the node so reached, and suppose it
is labeled S': let §'=goto(S" A) the
next state,

As in the case of shift, look at the
sons of @ : if there is one labeled
§” then let TOP point to it, othe-
rwise append a new son to Q' label
it §" and let TOP point to it.

Append to the list of pointers asso-
ciated with zi a new item. and let it
reference the same node referenced
by TOP.

Algorithm 2. Incremental LR parsing.

input : two input sequences z and . and a

tree structure for z.

output : a tree structure representing a parse

sequence for z’

method © (1) Let i and ] be references to the
items of the input lists for z and
7 such that z;=FIRST(wy$) and
zi' =FIRST(w y%). Let TOP be
equal to the first pointer appen-



(2)

(3)

004 SHREE PR =2 HLT YT 056

ded to the item containing z.
Repeat step 2 until j is advanced
to the item containing z” =FIRST
(¥y$).

Then let i reference the corres-
vonding symbol of z, and go te
step 3.

Perform a parsing step on z° as
described in algorithm 1.

Let P be the value of the last
pointer appended to z'. If there
exists a pointer associated to the

(4)

(5)

using the Algorithm 1 and

item labeled 7 which is equal to P
g0 to step 5, otherwise go to step 4.
Perform a parsing step on 2z, as
described in algorithm 1: if J is
advanced then advance i to the
next item too. Go back to step 3.
Report success of the match and
halt the parsing.

Example 3. For Example 2, the tree structures

Algorithm 2 is

shown in (Fig. 4)

z Ll(-f -0 [;J‘—Jj {0 —g
/\L/ Qa 2 La) (7:, 8 Q:) |3:\, (\’15) (v’j} (i} {=2) \“)
o - N S < .
¢ oG ® & ®
/%) ORNC () =) ()
W s ' () =)
R e L e e ] e I e L s RS P S
REECREC IR
( ,

\/;12} ? (o )

@» Qi) (o (w

ESS (n ) \{u\;

¢

(Fig. 4) Tree structure for &



4. An improving incremental LR parsing algori-
thm

4.1 Extended LR parsing table

Using the extended LR parsing table which
allows grammar symbol{N U 2) as the input
svmbols, we represent the improving incremen-
tal LR parsing algorithm. ‘

The conventional parsing table consists of
iwo parts. a action function action and a goto
function goto. The extended LR parsing table
consists of one part, a action function action
alone.

The program driving the LR parser behaves
as follows. 1t determines Sw. the state on top
of the stack. and the input string X; which is
grammar symbol. It consults action(Sn,X:], the
parsing action table for state Sy and input X

The extended LR parsing table for G of Exa
mple 1 is shown in (Fig. 5).

STATE action
n = { ) E T F i

0 b 84 sl 52 83
1 s6 acc
2 r2 87 T2 r2
3 4 14 4 r4
4 sH sd s8 s2 83
5 6 6 6 6
6 sh sd s9 83
T 85 84 510
& s g1l
4 vlooa7 ri vl
10 3 13 13 r3

i ™ 15 rh 5

{Fig. 5) Extended LR parsing tabie for &

We propese the efficient incremental LR
parsing algorithm as follows.

Algorithm 3. An improving parsing step on the

LROTRIE s 8 AT BEE 5 1685

tree structure.

input © a tree structure and an input list X
output: the same structure updated to include
the next configuration.
method: Let TOP point to the node Q{labeled
Sw) of the tree.
X; : the current input string., Sm - the state
on top of the stack.
case | © action( Sm.Xi ) = shift
{a) if X; =2 then
Sw = action{S,.Xi):
if TOP son=S8, then TOP:=TOP son
else
begin
create @ to Q:
TOP = Q
end.
) RN, (RS
(b1 if X; - N then
Sw T action($4.X):
if TOP"son = Sy then
begin
Q link last node(X) left:
veplace last_node(X;) by TOP:
TOP = TOP son

end
else
hegin
R link last_node (X;) left:
replace last node(X) by TOP:
create  to Q!
TOP = @
end:
Xioo X
case 20 action(Sw.Xi ) = reduce A-p
Q = TOP - IB}:
Sw i = action(85.A):
if @son = Sa then TOP := Q son
else
begin

create @' to @



166 SHEEEMIRE =RA) HHE HEZ 6

TOP = @
end:
case 3t action{ Sw.Xi ) = error
Stop the parsing and signal error
case 4! action{ 35X ) = aceept
Terminate the parsing and signal
acceptance

Algorithmm 4. An improving incremental LR
parsing on the tree structure.

Input ©input sequence X', and a free structure
representing a parse sequence for X.
output ' a tree structure representing a parse
sequence for X',
method :
(1) if Xi = FIRST(wy$} then i := i™X):
if X;'= FIRST(w y$) then j := j"(X):
According to Algorithm 3, initialize y of X' by M.
first_node(N of X') 1= last node(N of X}:
first_node(} of X') = tast_node($ of X}:
TOP := first_node(¥X:):
{2) node(Xy") 1= TOP:
if X' = FIRST(¥$) then go to step 4
else go to step 3.
(3) Using algorithm 3, perform X', go to step 4
{4) P = last_node(X ):
if P = TOP then go to step 6
else go to step 5
(51 Using algorithm 3, perform X', go to step 4
{6) Stop

Example 4. Using the extended LR parsing
table in (Fig. 5). we suppose that X={(n-n)-
(n-n} medified to X" =(n-n)*(n-n).

From step | in Algorithm 4, we have i=j=8,
and X' =(n-n)*F. TOP points to node 11
labeled 811 In step 2. since X¢ *FIRST(F%)
goto step 3.

In step 3. as action(Sy *)=reduce F—(E).
back up the tree from the node 11 by 3 levels.
Let the node 1 labeled 8y, and action(Sy.F)

=85, Since Sy exists at the sons of node
TOP points to node 12 labeled S;

In step 4. Let node 15 be P. Since P is not
equal to TOP, go to step 5. In step 5. as
action(S3.#)=reduce T—F, back up the tree
from the node 12 by 1 level. Let the node 1
labeled S5, and  action{Sp,T)=Sz Since S
exists at the sons of node 1, TOP points to
node 13 labeled Ss.

In step 4, P points to node 15. Since P is
not equal to TOP, go to step 5. In step 5, as
action(Sg.*) =8;. Since 8; does not exist at the
sons of node 13, the new node 28 labeled S:
is appended to the tree, and TOP points to
node Z28. Then we have j=17.

In step 4, P points to node 15. Since P is
not egual to TOP. go to step 5. In step 5, as
action{S1,F) =510 Since Sic does not exists at
the sons of node 28, the node 28 points to root
node 16 of a left subtree for node 15 appended
to X7, The node 15 appended to X is
replaced by node 28 pointed by TOP. The new
node 29 labeled Sio is appended to the tree,
and TOP peoints to node 29. Then we have
i=8.

In step 4, P points to node 14, Since P is
not equal to TOP. go to step 5. In step 5, as
action{S10.%) =reduce T—T#F, back up the tree
from the node 29 by 3 leveis. Let the node 1
labeled Sg, and  action{8,T)=8;. Since 8
exists at the sons of node 1, TOP points to
node 13 labeded Sz

In step 4, P points to node 14. Sinee P ig
not equal to TOP, go to step 5. In step 5, as
action(Sy.8) =reduce E—T, back up the tree
from the node 13 by 1 level. Let the node 1
labeled So, and action{S,E)=S:. Since §
exists at the sons of node 1, TOP points to
node 14 labeded S,

In step 4, P points to node 14. Since P is
equal to TOP, go to step 6. In the step 6, the
execution of the algorithm can be halted.



Therefore, using our incremental parsing alg
orithm 3 and algerithm 4. the tree structure fo
r X' ={(n-n)*F is shown in (Fig. 8}

Only 7 steps in our algorithm used for the
incremental parsing, while Celentano s algori-
thm required 18 steps.

4.2 Experimental resuits

To evaluate the our incrementai LE parsing
algorithm. we implemented our algorithm and
the conventional algorithm with C language on

UNIX operating system.

14

A

{Fig. &) Tree structure using our incremental parsing algorithm for G



SR TOMST AT 6

(Tahle 1) shows the input sentences of ¢
{Table 1> input sentences of ¢

iniput | )

i Ut sentence

case
i (n-ni-tn-ni + (n-nl*(n-nl
2 (n-a¥n-n) » fy-n)-(p-n!
3 n=lo=n) - p¥(p-n)
4 nx{n-n) > n-(nond
5 -ni-{n tn-n)d o (nend-(ntloen)
——]

i fneni-(nk(a~nll - (-ni-(n-tn-nh?
7 n-n-n-Un-a)-tnn)) > (n~(n—nd-Un#nt=tn b
8 n=(p-nN-Up*rn) In-n)i = h-la-phk-Up-ni-in n)
4 with aa <o s 2 with ua do s
10 with aa do s » with a,a do 5
11 with ag do with aa do s -+ with aa do with wa do s
12 with a,a do with a4 do s — with aa de with 2a do s

The performence measurements of the input
sentences are shown in (fig. 7).

As shown in case 1 of (Fig. 7), our algorithm
requires 36 parsing steps. while the conven-
tional algorithm does 47 steps, using memory
space of 672 bytes in comparison with 912
bytes in Celentano’s algorithm.

As shown in case 3 of (Fig. 7). our algorithm
requires 26 parsing steps. while the conven-
tional algorithm does 37 steps. using memory
space of 456 bytes in comparison with 698
bytes in Celentana’s algorithm.

Therefore, we show that the parsing steps
and memory spaces in our parsing algorithm
are reduced in all cases.

5. Conclusions

The incremental parsing techniques are an
essential part of language-based environments
which allow incremental construction of prog-
rams.

Celentano described an incremental LR par-
sing algorithm. Celentano suggested a possible
improvement that would make his algorithm

parging
steps

I

parsing
steps

|

case § case § casa 7 case B

parsing
steps

I

A
case § <ase 10 cass 11 case 12

8

memoyy
spaces
{bytes)

1

memory
spaces
{bytes}

1

case 5 casg § CasE 7 casg £

mamary
spaces
{byias) |

T

A B

case 10 case 11 case 12

A :our algarithm, B : canventional algosithm

(Fig. 7) Performence measurements

linear in time and memory space. Agrawal and
Detro have shown how to extend the algorithm
to accommodate epsilon production rules. How-



s WA OG0 ONDCHRIVe i
time and storage requirement to be of practical
use,

We use the extended LR parsing tables
which allows grammar symbols for the input,
and we apply them to our incremental parsing
algorithm. Using the extended LR parsing
table, we suggest several methods to reduce its
memory spaces and parsing steps as well. The
algorithms described here were implemented in
C laneuage on a UNIX operating system. and
were tested with several sentences for expres-
slons.

As shown in case 1 of (Fig. 7). our algorit-
hm requires 36 parsing steps. while the conv-
entional algorithm does 47 steps. using memory
space of 672 bytes in comparison with 912
bytes in Celentane’s aigorithm.

We show that the parsing steps and memory
spaces in our algorithm are reduced in several
sentences. The use of the substring parser in
incremental parsing, however, has to be inve-
stigated further. One incremental parser cons-
tructed by the method in this paper is well
being in our work on the implementation of an
incremental evaluation algorithm for ordered
attribute grammars.

In particular, our Ilncremental LR parsing
algorithm is more effective in the case of com-
plex and large grammars, and long parse tree,

References

(1] Aho. A.V.. Sethi. R. and Ullman. J.D..
"Compilers: Principles. Techniques and Tools™.
Addison-Wesley, 1586.

(2] Ghezzi. C. and Mandrieli, D, “Incremental
Parsing”, ACM TOPLAS. Vol.l. No.l. pp.
5870, 1879,

[3] Ghezzi. C. and Mandrioli. D.. "Augmenting
Parsers to Support Incrementality”. Journal
of ACM, Vol,27. No.3. pp.564-579, 1980.

CHOTAE NS BT ST uh 166

“lhioremental LR Parsers’
Acta Informatica. Vol 10, pp.307-321, 1978
5] Agrawal, R. and Detro. K.D., "An Efficient
Incremental LR Parser for Grammars with

iy eselitanoe, o

Epsilon Productions”. Acta Informatica, Vol.
19, pp.369-373. 1983.

6] Schwartz. M.D.. Délisie, N.M. and Begwani,
V.8. “Incremental Compilation in Magpie”.
ACM SIGPLAN Notices, Vol .19, No.6, pp.
122-131. 1984,

[7] Yeh, D.. “On Incremental Shift-Reduce Par-
sing”. BIT. Vol.23. No.i, pp 36-48, 1983.

[8) Yeh, D. and Kastens. U., "Automatic Cons
truction of Incremental LR(1)-Parsers”, ACM
SIGPLAN Notices, Vol.23. No.3, pp.33-42,
198%.

[9] Bhatti, M.A., "Incremental Excution Envi-
vonment”. ACM SIGPLAN Notices. Vol.23.
No.4, pp.56-64. 1988,

[10] Snelting, G.. "How te Build LR Parsers
Which Accept Incomplete Input”. ACM
SIGPLAN Notices. Vol.25. No.4, pp.51-58.
1990,

[11] Rekers, J.. Koorn, W., "Substring Parsing
for Arbitrary Context-Free Grammars™, ACM
SIGPLAN Notices, Vol.26, No.5, pp.59-66,
1991,

[12] Beetem, J.F. and Beetem, A F.. “Incremen-
tal Scanning and Parsing with Galaxy”.
IEEE Transactions on Software Engineering.
Vol.SE-17. No.7, pp.641-651, 1991.

{13} Larcheveque, J.M., "Optimal Incremental
Parsing”, AOM TOPLAS. Vol.17. No.1. pp.1
15, 1995,



n?

2l =R Hh MeE 08!

Sk
|

= HelE

g

L
=

ot=

ior
ol

P o

o4

A

ALE
fY

}

A

o
i~

—

iy

Ao

g
=
je.]
(o]
=

A

(T

19834 sddgw

Hin

Azt
1A

%
AlE

3}

o

&A
T

Axest &

ke,

4
4

<!

A

tekul 2

o

T

s

T

1

199413 ~1996

Aol QEUlE ¥

A
-

g
1



