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An Explicit Superconcentrator Construction for
Parallel Interconnection Network

Byoungsoo Park '

ABSTRACT

Linear size expanders have been studied in many fields for the practical use, which make it possible to connect
large numbers of device chips in both parallel communication systems and parallel computers. One major limi-
tation on the efficiency of paraliel computer designs has been the highly cost of parallel communication between
processors and memoties. Linear order concentrators can be used to construct theoretically optimal interconnect-
ion network schemes. Existing explicitly defined constructions are based on expanders, which have large constant
factors, thereby rendering them impractical for reasonable sized networks. For these objectives, we use the more
detailed matching points in permutation functions, to find ocut the bigger expansion constant from an equation,
iryl=[1 +d(1—[x1/n)] |X|. This paper presents an improvement of expanmsion constant on constructing
concentrators using expanders, which realizes the reduction of the size in a superconcentraior by a constant fac-
tor. As a result, this paper shows an explicit construction of {(z, 5, | -3 /2) expander. Thus, superconcentrators
with 2092 edges can be obtained by applying to the expandars of Gabber and Galil's construction.

1. Introduction One of the most important issues in parallel high
computing system is the communication between pro-
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processors and memory in a shared global memory
machine. In order to achieve high-bandwidth parallel
communication, it is necessary to be able to move in-
formation in parallel along separate, or disjoint, com-
munication pathways. So as to do in a point-to-point
fashion, multistage rearrangeable networks such as
the Benes network[d], which has hardware complexity
O(NlogN) and is extracted from the three-stage Clos
network[5] have been proposed, as well as single-stage
recirculating network such as the shuffle-exchange net-
work[15]. Such networks have limitations in either the
complexily of the routing computation[11], or in the
time required to move the information[3][12}. Because
of these problems, many researches have been focused
on finding some new interconnection structures, which
realize optimal hardware complexity and which might
be easier to route than the existing configurations.

In order to route » streams of information ef-
ficiently in a parallel computer, it is necessary to con-
struct a network with » disjoint paths from source to
destination. One way to build such an interconnection
is to use a superconcentrator to divide the input stream
into two oulput parts, then to recursively divide each
part of the output with two additional superconcent-
rators until each stream has been connected to its
specific destination{9].

To build optimal such an interconnection scheme,
it is necessary to use linear superconcentrator with
hardware complexity O(z). Pinsker[13] and Pippenger
[14], showed how to build such a superconcentrator,
by using a more primitive {wo-stage structure called a
concentrator.

Pinsker[13] proved that there exists an (n, m) con-
cenfrator with 29» edges. Pippenger{14] gave a new
version of the nonconstructive existence theorem and
a simple recursive construction with 39% edges with
the good and the bad one argument. However, the
explicit construction is still needed for many applicat-
ions. Chung[6] improved it to 261.52 edges and Alon
and Milman[t] to 175% edges again.

So as to develop the construction of explicit linear
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sized concentrators and superconcentrators, Margulis
[10] was the first to describe a family of linear size ex-
panders in bipartite graph G, and proved [T |21 +d
(1—-1X|/m)] |X| for any subset X of input vertices
with | X|<n/2 It is an (n, &, d) expander having 2 in-
put verlices, 2 output vertices and at most 2xn edges.
Furthermore, an explicit construction is built by Gab-
ber and Galil[7] with 404n edges in a family of ex-
plicit graph G,. By using it, this paper shows that an
improvement of expansion constant d can reduce the
size of the resulting concentrator built from any given
expander. Thus, it is possible to have superconcen-
trators with 2092 edges by applying these expanders
1o Gabber and Galil's construction.

The basic expander is described in section 2. For an
{n, 5, 1—+/3/2) expander, we will provide some proofs
in the section 3 and section 4 to find d by using
Gabber and Galil's method, which is the principal
contribution of this paper. The section 5 shows that
the result can be improved by applying it to them.

2. Preliminary

The basic expander defined by Gabber and Galil(7]
consists of a set of # inputs, where n=n?, m is any
integer, and an equal number of outputs. The inputs
are connected to the outputs by a set of five
permutations, which shift each row right or left several
columns, with wrap-around. Each successive row is
shifted one more places until the middle row is shifted
back onto itseif, and so on. Identity and column in-
crement permutations are included, and a separate set
of similar permutations shifts the columns by rows.
These permutations are described by the following
functions, where -+ is mod m:

aolx, ¥)=(x, 3), oz, Y=, x +3), a2z, Y)=(x, x +y +1),
ax, =(x+3,3), aulz, D=(x +y +1, %)

First of all, a concentrator is defined to show how
to build a superconcentrator through it. An(x, 0, k)
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concentrater is a directed acyclic graph with » input
vertices, O0x output vertices(8<C1), and at most &z con-
nections from the inputs to the outputs, and it has pro-
perty that, for every subset of inputs X such that | X|
<n/f2, there exist af least X flows (vertex-disjoint dir-
ected paths) connected from input to output vertices.
In order to build such concentrators explicitly from
expanders, an (n, %, 4} expander, as used through this
paper, is a two-stage network with » inputs and »
outputs, with each inputs connected by links to fn
outputs. The links are chosen in such a way that, for
every set of inputs X, where |X|<n/2, the set of
outputs I', which are connected by links to X, ob-
serve the rule that:

Tl =1 +d(1—iXx]/m]1X] D

One of the major difficulties in this theory is to
find out d value which satisfies (1) and to construct
linear families of superconectrators according fo #—
o linearly. Therefore, the sohation of estimating the
expansion constant obtained by the five permutation
functions, beginning at Theorem 2.1 is considered step
by step with a relatively straight forward analysis.

Theorem 2.1:For 0;=(1—x)/(1 +r), 8:=/(1 —x2),
and 0<x <1, we have

120120, L |zl +8: L lawei—24l% ()

—a<n<mo —w<{n<o

where {2,} - w<n<« be a series of complex numbers{7].

Definition 2.2:For any m, n€Z, a function ¢;: Z*
=72, {piii€1, 2} defines @i0m n)=(m n +im),
and @.0m, n)=(m +an, m), where Z denotes the set
of integers.

Proposition 2.3:Let Ay={(m, n):Im|<|n|}U{(m n)
sm=mn}, and Ay ={(m n): Im(>n}U{(m n):m=—n}
but m#0 and ##0. Then, the condition that pA;-;)
have always disjointness for each case ¢ and /€ Z is at
least A > 2.

Proof : For simplicity, it will be only argued that the

result for =1. The proof for {=2 is identical. This
will be proved by induction on /:p{(m n)}=0m, 2Im
+n). So, for { =(},’ the result follows the fact that all
clements in a set A, are not changed. Now assume
that the result is true for / = £~ 1. Then, points at (m,
2(k— 1) m +n) are all disjoint. If all points move along
#-axis in equal, it is obvious all elements are disjoint.
Therefore, (m, 2(k—1)me —~2m +n) =@*(m, n) gives
the required result for /=4. Eventually, that A is at
least 2 should be required also for disjointness. M

3. Expansion Constant in Complex System

Let @ 4 denote a system of complex numbers in the
range —oo<m, #<c0. Through conversions of G »
by virtue of functions {¢;:¢€ 1, 2}, we are capable of
deciding the expansion constant.

Lemma 3.1: Assume that ao=0, and . [am »|*<
o0, Then, mr

Z Eamn+m_aun|2+z iami‘mn_ﬁus!zzm E Eamd’ (3)

mn

Proof:In order to use (2), assume that we have 2; =
@yiom w for 7€ Z. Then, (2) can be written into follow-
ing equation:

lam 21?6, Z | @giim m|* 462 Z: |G+t om ) —Botim w1,
i i
@

where (m, m)E{A;_i1i€]1, 2},

If right-side on (4) is considered with (m, )€ A;_;
according to #, these points will be distributed with
regular distance. Disjointness can be guaranteed by
Proposition 2.3. Therefore, (4) is equivalent to:

famnizgel . iamnlz +0;- '“tr,(m n)’_am.u’z
For any (m, #)€ A;-;, we have:

Y lamnl2<20; 3 |Gmul?
m H mn

+8,( Z ]am,nJrlm““am.n'z‘*‘ Z 'ﬁmh\n,x"'am.niz)
mn mn



Next, if the argument, 26, . |@m »}*. from right side

mn
moves to left side, similarly we obtain:

(1 =200 [amn!D/0:< Y mn+am—Om »l?
mn mn
+Z:*lam+}m.n-amnlz (3)

When the condition of (3) is satisfied with (5), we can
get:

2d =(1-20,)/8, (6)

Thus, as long as we choose a value of 2Ad from
(6), the inquality (3) is satisfied and the theorem
holds. This completes the proof O

The maximum expansion constant d from Theorem
2.1, can be taken from A=2 and x=1/+/3 such that:
d=1-3/2.

Theorem 3.2: Let Apxm be the integer sets in [0, m)
x {0, m)-plane. For m=1, 2, ---, the bipartite graph
that is capable of being obtained from the given per-
mutations {ao, 01, 62, 03, 64} ON Amym is an (n, 5, &)
expander that satisfies equation, {Tx| 2[1 +d(1 ~ | X|
/M) 1 X], where n=n#, d=1- v/3/2, and T, denotes
the nodes in output that are adjacent to nodes in X,

4. Expansion Constant

First of all, we need a definition on permutations for
the proofs of the next lemmas. (Fig. 1) shows positions
to which these permutations are connected. These are
for matching discrete functions into continuous.

Definition 4.1:8;: A=A, 0, <™, x/m=1x,, 0<
&<m™", yfm=ym,

51(xm YEr, Vi +6)=(xm +E1, Xm +¥m &)
3:(xm +Er, Y TE)=(Xm +Ex, X¥m+ym +m™ +£,)
83(Xm +Ex, Y +E)) = (xm +Ym +Ez, Ym TE,)
34X &2, Yo TE) =(¥m +¥m +m™! &1, Ym +E,)

where A is defined as the [0, 1) %[0, 1} rorus, and the
<+ is modulo 1.

The concept of the measure p(A) of a set A is a
natural generalization for the length, the area, the
volume and so on. The common value u(A4) of the
outer and inner measure for a countable sei A4 is

called its Lebesgue measure.

(X Fok ) (X, Xk Y} (x,._tx,,+ Yo 0Ty

(Xn, ¥) 7 (P 8:(P)
e I A

€.

{Xbnc ye)

{Xnd Yoy Y } ]

(Xt Yot a1, yu) §

(Fig. 1) Matching points with 9,

Showing Theorem 3.2, the next Lemma that re-
quired the assumption of Lebesgue Measure should be
safisfied.

Lemma 4.2:1f [4fdu=0 and [41f]*du<co are
satisfied with measurable function f on 4 according

to the definitions of Lebesgue measure, we obtain:
4
Y 18N~ f1Pdu=2ard (1 f1?dp ]
i=0
Proof . In order to make sure the assumption, we have:

Ja SN dp(X) = [ 4, p(X) d p(X) ~ | 0 p(X) d p X)
Since p(X°) and p(X) are measurabie, it follows:
[a FQOBp(X) = plX°) p(X) — p( X) 1A X) = 0.

Similarly, we have: [4| f(X)]|? du(X) = g(X) u(X)< ©
By assumptions and /€ L*(4), the condition for ex-
istence Fourier coefficient is satisfied. So, the Fourier
coefTicient of function f exists on 4. Then, @m «(f)=
Ja S (D) &m n(D)YAu(p), Where Em n(p) = e 2m= +m) and
p=(x, ¥). Fourier coefficient of 8, () and §:*(f) are:
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m, n(él_x(f)) = jA f(&(ﬁ)} Em D) A1(P) = Qs 41, ()
m 87N = [4 (31PN Em o D) dp(D)
= G +am () €72

These denote that the coefficient is not changed be-
cause it is magnitude. Therefore, the results can be
simplified 10: dm #(874(F) = Gm w07 () = @m +1n. 2 )
Stmilarly, we have:am #(85 ' (F)) = tm #(67 ()= m n +1lf)

By using the Parsavals equality, Lemma 3.1 drives

such that: Y lamal?= 4| f1?dp<o0
"wn

21/ =8N dp+2[ 1 f —87 NP dp=aad [ 1 dp
®

From (8), we obtain:
§ J16;%A) —f12du>4ad (| f 12 dy O

Definition 4.3 :1f X< 4 and x € X, then the Character-
istic Function X4 defined by X4(x}=1 on x€ 4 or X.(x)
={ on x & 4 is measurable. And for every Y £ 4, the
permutation & has the property that §7'(Xy) = Xs-yp) =

Xatry -
Lemma 4.4:1f subset X & 4 is measurable, we have

_g X —674X)) = 22d p(X) p(XO). ©)

Proof : This will be proved by induction on A. First of
all, in order to use characteristic function from Defi-
nition 4.3 assume f = Xy —pu(X) for a measurable sub-
sel X< A. Then, Xx=1on X and Xx=0 on X*.

For x=1, the argument, §;'(f}— £, in (7) can be re-

written as follows:
87— =Xsn—Xx (10)
From (10), we have:

1 on [64X)—XIULX~64X)]

0 otherwise

16:'(N—f17=

Since &; is preserving measure, we get:

(4187 = F 1P dp= p64X) — X) +p(X — (X)) or
Jal8r N~ F 12 dpu=2p(x —67'(X))
If this equation is substituted to (7), we have:

4 4
‘2-:: _flé;“'(f)—flzdpz=§ 2u(X~8;' 0N =ad[if 2 dy

Also, Lemma 4.2 yields: 24:, wX—67'(X0) = 2du(X) u(X°)

=]
As a result, this shows that it is true for A= 1. Now,
in order that the result is true for A=% on (7), there-

fore we have:
8 () —f =X —Xx (11)
The absolute value is:

1 on [85X)—X]ULX=5%X)]
0 otherwise

64 N-f1=

also, [4187%(f) — F12 =2u(X - 5:%(X))
4
Assume that ¥ p(X—67"(X)) 2> 2kdp(X) p(X°) it is
i=1
true for A=k, Finally we have only to show that the
result is true for A=/ +1. Similarly, from (10) and
(11), it drives:

87 ) - =876 -+ N~ F =Xsprn—Xx
From Definition 4.3, we have:

Y SIP 1 on IB4Y0-XIUX-5"(0)
674 A =F12=4

otherwise

also,

[al87* () = £12 =2u(X = 67* *(20) (12)_
From Lemma 4.2 and (12), we obtain:

i w(X =870 = 20k +1)dp(X) u( X°)

i=1



Therefore, this proof s verified by the inductive hy-

pothesis. ]
Lemma 4.5:Assume |(X|<n/2 and every subset
X; Amxm . Then,

2

L o0 =X1+odX) = X1 = |¥; 1| 224 | X | X}/,

i=1

where Y; =[x - [ (XAX]1N e X\X]
Proof : From Definition 4.1, we have (Xm, ¥m) € A. Let

A~(x‘, y.)={xm +81, Ym +5y10$€x, E:;,(m"} and i:

U A, for a subsel X< Amxm. Let € X and gex.

E-0 ¢

Then, we get:
Ap=1%m +ELB), ¥m+6(8):0SeR<m™, 0<e,(H)<m™ '}
The permutations (=1, 2) on € X are:

51(18) = {xm +£x(ﬂ)y Xm+ Ym +5y(ﬂ)}
32(B)={xm +€B), Xxm +ym +m ™! +£,B)}

If #€ X —¢,'(X) and a€ X —g;'(X), these imply

eX and { a€o ') la) & X }
a , an
“ w07 (X) <> ar{a) € X

. (B EX e BEST(D)
BEXand[ 8 - s i_]..}

5B EX — B&37'(X)

Thus, above relationship results in #€ ¥ —§;'(¥) and
se ¥ —87'(X). However, the overlapped range can ex-
ist in 82(8,) and 6,(82), which should be removed
such that:

pLONS T (ONUNS ()] = ul X\ST' (D)}
+ul XN (0] - pLENST' DI Npl XN (D) (13)

By Definition:
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WX)=1X1/nand f(X) = x| /n (14)
Therefore, (13) can be written by (14):

l - -1 ’

";; (IX—O'| l(X)I+lX“Uz (X)I —iY,' D;

where ¥;"=(X\a,_, ' (X)) N{X\o, (X)).
If similar method can be applied to §; and 8,:

IS

i 2
- "

u{X\§; ' (X)} =
|

1

oy (X)) —XIHe )~ X -1¥;]]

If Xis substituted for X on Lemma 4.4 with A=1, we
4

obtain: ¥ u(X—57'(X) > 2du(X) u(X°)
i=1

Finally, it is simplified to:

oy 0 X Ho X)X |-V 26du | XN X /n O

2
i=

Proof of Theorem 3.2:For i=1, 2, the relationship
between permutations o, ,(X), 6x(X) {62, ox:for

simplicity) and 'y is Te 2 XUay_ Uy, If rewrite,

r:fc\X2 (0'2i~ I\X) U (G'zj\X)
Y2 {(0'25—1\)() U(O'zj\X)]\X{(O'zi—l\X) N (Uzi\X)}

By using Lemma 4.5, we have for an i and every subset
XE Amxm: L2 — X Hou = X1V 2d 1 X100~ | X1 /n)
From these inequalities, we get:

ITe=X|2lou-1—X|+lou—X|-| Vil 2d | XI(1 - | X | /n)
IT:A =[1 +d(1 ~ | X| /)] X1 []

5. Bound on Superconcentrators
In order te construct a superconcentrator from

concentrator, we build a network with » inputs and »

outputs, with a direct connection from each input to
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a corresponding output. To superconcentrate a set of
inputs 4 to a set of outputs B where {41=|B!, con-
nect any inputs in 4 to any output in B that happens
to be linked by the direct connection. If |A4|>n/2,
then at most #/2 of these inputs will fail {o link using
the direct connection. These are then passéd through
an (xn, 0, &) concentrator, while on the output side a
mirror image structure feeds the outputs. Between
these two structures, a recursion of the entire super-
concentrator structure is implemented, but with 6n
inputs and 6n outputs. This structure is illustrated in
(Fig. 2). The total hardware cost S(#u) of this struc-
ture, in terms of the number of links, is given by:

SO =n +2kn +5(6n) (15)

or, after solving the recursion (15} (ignoring the minor
impact of restrictions on the number of inputs to the

concentrators):
S)/n=02k +1)/(1-6) (16)

Theorem 5.1{7]: Assume an (n, &, 2/(p — 1)) expander
exists. Then, the linear order superconcentrators with
{(2k +3) p +11n edges are able to be built for every #.

Gabber and Galil construct a obvious family of lin-
ear superconcentrators with (16} and Theorem 5.1 for
an (n, 0,, k, 1/2) bounded concentrator as shown in
(Fig. 2). For example, applying this formula to Pip-
penger’s (», 2/3, 6, 1/2} bounded concentrator, that
proved its nonconstructive existence, yields S(») =39
7. It is simple recursive construction that 39» edges
drive a family of linear superconcentrators. Therefore,
by applying an (, 5, 1 —+/3/2) expander, proved on
Theorem 3.2, to Gabber and Galil's construction, we
get better result of density in superconcentrator.

The expansion value, Gabber and Galil (d =0.0670),
Jimbo and Maruoka (d=0.1161), and the improved
value(d = 1340}, directly impacts the density of the
resulting superconcentrator according to the number
of permutation. Using the formula developed by

Gabber and Galil[7], they found that for an expander
structure with k=35, and d=(2— m/4, =31 and
the resulting superconcentrator has density:

Sn)n=02k+3Np+1=2:543)-31 +1=404

Using the improved value(d =1—+/3/2, p=16), it can
be obtained that:

St)/n=(2k +3)p +1=(2:5 +3)-16 +1=209
Gabber and Galil also developed an expander with

k=17 and d =(2—+/3)/2, for which they found p= 16,
and S(n)/n=273. Using the new value, we found :

2/(p—1)<2d = p>8.46

Therefore, if we take p=9 since p is the smallest
natural number, the density is:

S)/n=02k+3)p+1=(2-74+3)-9 +1=154

Furthermore these comparisons can be applied to
in a more recent result of Alon and Galil[2]. The ex-
pansion of T, is approximately 0.411---. If our new
concentration coefficient is applied for T, we can get

it as follows:
2/(p—1)<0.411 = p>5.886. an

By choosing p from eq.(17), the densily is:

(Fig. 2) A recursive structure of superconcentrator



Smfn=0Qk+3)p +1=02-7 +3}-6 +1=103,

while they found the density is 122.74---.

6. Conclusions

This paper proposes a new formula to find expan-
sion constant, which improves the density of the con-
centratorm and superconcentrator composed of ex-
pander. The better result is important only if it pro-
jected to general routing scheme and to the well-known
concéntrators such as Pippenger’s network. Further-
more, we might have such a valuable result, only if
our approach to an expansion constant through hy-
pothesis which is represented by analyzing the distri-
bution of output can be proved theoretically. It, how-
ever, remains to be proven or disproved whether the
improved bound is the best possible construction of a
concentrator using an expander or not. Supposed that
an expander on the hardware complexity of the Pip-
penger structure can be explicitly constructed, this im-
provement will have useful importance in switching
systems. For instance, the asynchronous transfer mode
switching system promises to be the ultimate on-
premise internetworking technology. Its high-band-
width uniform switching can transfer graphics, audio,
video, and text from applicalion to application at
much higher speeds than now available.
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