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NOTES ON THE FACTORS OVER
THE HILBERT SPACE L% (R¢, )

DonGg SEo KiM AND CHANG HO BYUN

ABSTRACT. We construct factors of type I1] and of type Il over
the Hilbert spaces on the equivalence relations.

1. Introduction

In this paper, we show that the relations between the Hilbert spaces
on the equivalence relations over the product space with the o-finite
measure and the Hilbert spaces on the equivalence relations. For this we
construct the von Neumann algebras on the equivalence relation.

In §2, we define the equivalence relations and group actions and intro-
duce some properties. Also we construct a measure on the equivalence
relation(is called the left counting measure). For given relations, we de-
fine ergodicity and invariance and give some assumptions for the measure
theoretic construction. The properties of ergodicity and invariance are
introduced and we define the factors in the measure theoretic sense.

In §3, we define the Hilbert space L2(R¢, 1) on the equivalence re-
lations R¢; and prove L*(Re, ) = L*(X) ® I2(¢}) and Lz(ﬁé,ﬂl) =~
L*(Re, ) ® L2(R,m). Also we construct factors W*(R¢;) of type I11

and W*(R ) of type Il

2. The Hilbert Space L?(X, ) on (X,B, 1) and von Neumann
Algebra on L%(X,p)

Let (X,B, 1) be a Lebesgue space and R € X x X be an equivalence
relation. We write  ~ y for (z,y) € R, and define m(z,y) = z, the
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left projection of R, and m.(x,y) = y, the right projection of R. For
any z € X, R(z) = {y|(z,y) € R} is the equivalence class of z, and for
a subset A C X, R(A) = U{R(z)|x € A} is called the saturation of
X. If R(z) is countable (finite) for each x, then the relation R is called
countable (finite). Now if X is a standard Borel space with o-algebra ‘B,
then we say that R is standard if R is a Borel subset of X x X ; that
is, R is in B x B. We suppose R is countable. It is important that
and m, send Borel sets (in R) to Borel set in X, since these maps are
countable to one. It follows that if A is a Borel set in X, then R(A) is
also a Borel set in X. If u is a o-finite measure on X with the property
that u(R(A)) = 0if u(A) = 0, then u will be called quasi — invariant
for R, and R will be called nonsingular with respect to .

Let G be a countable group acting on X as automorphisms. Let
Re = {(z,97)lz € X,g € G}. Then R is a countable equivalence
relation. If 4 is a o-finite measure on (X,B), u is quasi-invariant for
R if and only if 4 is quasi-invariant for G in the usual sense.

THEOREM 2.1 [5]. Let (R,€) be an equivalence relation. The func-
tion y — |m~Y(y) N C| is Borel and the measure 1 defined by

w(C) = /X I~ Hy) N Cldu(y)

is o - finite; it will be called the left counting measure of .

DEFINITION 2.2. Given R on (X,B,u), a set A € B is said to be
invariant if R(A) = A up to null sets. The invariant sets, denoted by
J(R), form a ¢ - subalgebra of B. R is called ergodic if J (R) consists
only of null or conull sets. A Borel function f is called invariant if

f(z) = f(y) for a.a. (z,y) € R.

DEFINITION 2.3. We say that G acts ergodically on (X,B, u) if we
have ;(A) = 0 or u(X \ A) = 0 whenever A € B and p(g(A) VA) =0
for each g € G.

LEMMA 2.4 [4]. G acts ergodically on X if and only if the following
condition is satisfied: if f is a bounded measurable complex-valued func-
tion on X, and f(g(x)) = f(z) a.e. on X, for each g € G, then there is
a complex number c such that f(x) = ¢, a.e. on X.
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LEMMA 2.5 [4]. For each g in G, there is a non-negative real-valued
measurable function ¢, on X such that

/X x(o())du(z) = /A x(2)8y(2)du(z)

for every non-negative measurable function y on X. Moreover, for each
g and h in G,

¢g(z) > 0,040 () = Cbg(x)aﬁh(g*l(x)),qﬁe(m) =1 a.e. on X.

Let H be the Hilbert space L%(X,%B,u). For v € L>®(X,B, u), we
assoclate the operator L., in B(#) of left multiplication by u. Let 4 =
{Lulu € L*®}. A is a maximal abelian von Neumann subalgebra of
B(H). With f in H and g in GG, we can define a measurable function
U,f on X by

(Uaf)(z) = [y ()2 f (g7 (2)),

where ¢, is the function introduced in Lemma 2.5. Then U : g — U, is
a unitary representation of G on H which satisfies

(a) UgAU; = A for each g € G.

(b) ANU,A =0 for all g(+# €) in G.

We say that (7 acts ergodically on A if A is a scalar multiple of 1 when
UgAU; = Afor each g € G and A € A.

PROPOSITION 2.6 [4]. G acts ergodically on A if and only if G acts
ergodically on X.

DEFINITION 2.7. Let M C B(#) be a von Neumann algebra. M is
called a factor if the center of M is a scalar multiple of 1.

PROPOSITION 2.8 [4]. Let M C B(H) be a von Neumann subalgebra
generated by A and U. If G acts ergodically on X, then M is a factor,
and its type is determined as follows.

(1) M is of type I if and only if u(xg) > 0 for some zo in X. It is then
type I, where n is the (finite or countably infinite) cardinality of G.

(2) M is of type II if and only if p(x) = 0 for each x in X, and there
is a non-zero o-finite measure iy, defined on the o-algebra B, invariant
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under G. (uo(9(A)) = po(A) when A € B and g € (') and absolutely

continuous with respect to pi. (ug(A) = 0 when A € B and p(A) = 0)
If 4o(X) < 00, M is of type II; and if p1o(X) == 0o, M is of type I],.
(3) M is of type I11I if and only if there is no measure satifying (2).

3. Main Results

Let (R, i) be a Lebesgue space and G be a countable group acting on
R as automorphisms. An equivalence relation R is a subset {(x,y) €
R x R|dg € G, y = gz} of R x R. Then (Ra, 1) becomes a Lebesgue
space, where y; is a left counting measure. Hence we define a Hilbert
space L2(R¢, ) on (Re, w). If £ is integrable on (R¢;, w),

(@ w)du(z9) = [ 3 f(a,0)duty)

T~y

f
Ra

For f,g € L*(R¢, ), the operation of f and g on L2*(Rg, ) is the
convolution product of f and ¢ as

(f *g)(a:,y) = Z f(.r,z)g(z,y).

~T

We shall construct the von Neumann algebra W*(R¢) on L3 (Ra, ).
Let R¢; be a countable relation on (R,8, x). For f € L¥ (R, w) with
supp f small (i.e, f(z,gx) = 0 a.e. except for finitely many g), Ly :
L*(Rg, ) — L*(Re, w) is defined by Lyg = f*gfor ge L?*(Rq, ).
Then we have LyL, = Ly,,, and L™ = Ly with f*(z,y) = f(y,x).

REMARK 3.1. A set of operators L defined by above is a unital *-
subalgebra of B(L?(R¢, ) with unit. Its weak closure will be denoted
by W*(R¢).

For f € L*(R¢, ) with supp fC D = {(z,z)iz € X} the diagonal,
we define F' € L>=(R, u) by
Flz) z=y

f(x,y)={0 r 4y



Notes on the factors over the Hilbert space L?(Rq, p) 277

Hence we have correspondence between {L|suppf C D} and L®(R, p).
For f, f' € L*(R¢) with supp f in D, if f(z,y) = 6, F(z) and f'(z,y) =
0zyF'(x), then

(f = mez (2,y) = by F(z)F'(z).

F4a

Therefore A = {Lys|suppf C D} is a von Neumann subalgebra of
W*(R¢), which is isomorphic to L= (R).

PROPOSITION 3.2. The abelian algebra A is a MASA(maximal
abelian subalgebra) in W*(R¢). ie, W*(Rg) N A" = A, where A’ is
a commutant of A.

Proor. D . Trivial.

C . Assume that Ly € W*(R¢) commutes with L, such that h(z,y) =
dzyH (z) for H € L°°(R). Then

(f*xh)(z,y) = fz,y)H(y), (hxf)z,y) = H(z)f(z,y).

Since H is arbitrary, when = # y, f(z,y) = 0. Hence Ly € A. |

Let (R,*B, 1) be a Lebesgue space and G be a countable group of all

mappings ¢ = [8 Il)] of R with z + az + b, where a,b € Q, a > 0.

Let Gop = {g = O 1 g € G} be a subgroup of G. Then Gy acts

ergodically on R. Hence G acts ergodically on R.

Let)?:RxRandé:{ﬁz [0 1:||a beQ,a>0}. G actson X

such that gZ = (az + b,u +Ina) for § € G and 7 = (z,u) € X.

LEMMA 3.3. Let m be a measure on R such that dm(u) = e “du(u).
Then the measure p = p®@ m is G-invariant on X.
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PROOF.

[ @@ = [([ Ftaz, e auto)auca
:/(a/f(ax,v e~ du(v))du(x)
= [ Fvveauteduty)

- [ foaw _

PROPOSITION 3.4. Let R be an equivalence relation on (R,*B, u)
and let R C X x X be an equivalence relation on (X, x B ,&2). Then
L3(R) ®l2(G) L*(R¢) and L*(R) ® 12(G) ® L*(R) = L2(X®l2(G)) =
L*(Rg).

PROOF. Suppose that » € L?(R

)
Re. The equation h'(z,gz) = h
L*(Rg), and

®12( ) = L*(X,I?(G)) and (z,y) €
(97!, gz) defines an element k' of

Hh’llizmc):/R W (2, 9) Pdpu(z, y) = /Z}hfl??”dﬂ)

T~y

/Zw (979, v) Pdu(y) = /}jlh (v)

geG geG

= HhHLZ(x)@P(G)-

Accordingly, there is an isometric 1som0rphlsm Vv, from L?(R) ® I3(G)
onto LZ(R(v) such that (Vh)(z,gz) = h(g~ ,ga:) Similarly, suppose
that A € L?2(R) ® lg(G) ® L*(R) = LZ(X 12( )) and 7 = (z,u) € X.
Then the equation A’ ((z,u),g(z,u)) = h( ', 9(z,u)) defines an element
B of L2(R ) for § € G and (z,97) € R(w Hence we have an isometric
isomorphism V', from L*(R) ® 1*(G) ® L*(R) onto L2(R 5), such that

. 2 G
(V'h)(Z, g%) = h(g ™", 97). O
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THEOREM 3.5. For A = L*(R) and a unitary V as in Proposition
3.4,

V(A xa G)V = W (Re).

PROOF. By the Proposition 3.4, L?(R) ® I2(G) = L2 (Ra).
For 30 ma(Lf)Ag, € Axg GW € LY(R¢) and (z,y) € Re with
y =gz,

V(S L))V IR Nz w) = 3 malLy ) Ao, (V- ) (0, )
2—1 =1

=Y flg T IV (67 g )
7==1

= Z fi(z)k (g; 'z, gx)

i=1
=" flz, kx)l' (kz,y)
ke
= (Lsk')(z,y),
where f(z,g'z) = 6., -1 fi(z). Since the elements considered above are

weakly dense in A x, G and W*(R), we have V(A x, G)V ! =
W*(Re). O

THEOREM 3.6. W*(R¢) is a factor of type I11.

PrOOF. Let I'(g) = {(z,gz)|z € R} be the graph of g in Re. If
Ly e W (Rg)NW*(Rg)' €W (Ra)NA' = A, then L; commutes with
Ly, where A is as in Proposition 3.2 and XI(g) is the characteristic
function on I'(g). Therefore

Ly Lrb(z,92) = LyLy  h(z,gx) for all h € L} (Re,m).

Thus

L Lsh(z, gz)

= X1(g) * [ * h(z, gz) Z Z Xr(g)(, 2) w)h(w, gx)

2T Zvw

= Xr(9)(%, 97) f(gz, 9x)h(gz, gx) = X1 (o) (T, 97) F(97)h (92, 92),

XT(g)
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since Ly € A and f(x,y) = 0, F(zx). Also,
L¢L h(z, gz)

= f*xr() * bz, 92) = YY" f(z, 2)xr(g) (2, w)h(w, gz)

xrrez Z2eew

= f(z,z)Xr(g) (@, 9z)h(9z, gr) = F(z)Xx1(g) (2, 9T)R(9, gT)

XT(g)

Hence F(gz) = F(x). The function F on R is G-invariant. Since G is
ergodic, by Lemma 2.4, there exists a constant ¢ with F(z) = ¢. Hence
W*(Ra) "N W*(Rg) = C. By a simple observation, there is no G-
invariant o-finite measure on R. By Proposition 2.8 (3), A x, G is of
type I11. The conclusion is obtained by Theorem 3.5. O

THEOREM 3.7. V/(L®(X) x5 G)V"™" = W*(Rg) and W*(R) is of
type 11,

The proof is the same as the proof of Theorem 3.5, via the unitary
V"’ in Proposition 3.4.
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