On the $Z_p$-extensions over $Q(sqrt{m})$

  • Published : 1998.04.01

Abstract

Let $k = Q(\sqrt{m})$ be a real quadratic field. In this paper, the following theorems on p-divisibility of the class number h of k are studied for each prime pp. Theorem 1. If the discriminant of k has at least three distinct prime divisors, then 2 divides h. Theorem 2. If an odd prime p divides h, then p divides $B_{a,\chi\omega^{-1}}$, where $\chi$ is the nontrivial character of k, and $\omega$ is the Teichmuller character for pp. Theorem 3. Let $h_n$ be the class number of $k_n$, the nth layer of the $Z_p$-extension $k_\infty$ of k. If p does not divide $B_{a,\chi\omega^{-1}}$, then $p \notmid h_n$ for all $n \geq 0$.

Keywords

References

  1. Bull. Austral. Math. Soc. v.57 Class numbers of real quadratic fields J. M. Kim
  2. J. reine angew. Math. v.166 Uber die Beziehung der Klassenzahlen quadratischer Korper zueinander A. Scholz
  3. Invent. Math. v.62 On the Stickelberger ideal and the circular units of an abelian field W. Sinnott
  4. G. T. M. 83 Introduction to Cyclotomic Fields L. Washington