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STRONG-MAX CYCLIC SUBMODULES
CHIN-HONG PARK

ABSTRACT. In this paper we Jefine CR(completely reachable),
MICR(minimal cyclic refinement) and MACR(maximal cyclic
refinement)-Modules. We have cbtained equivalent statements for
minimal cyclic submodule and maximal cyclic submodule. Also, we
have obtained necessary and sufficient conditions for a module M
with MICR to be cyclic or strongly cyclic.

1. Introduction

In this paper we characterize the minimal and the maximal cyclic
submodules of an arbitrary module M. Also we give some charac-
terizations of classes of modules, that is to say, strongly cyclic, CR(
completely reachable), strong CR. In order to do these we introduce
S(m), C(m), MICR(minimal cyclic refinement) and MACR (maximal
cyclic refinement) where S(m) is the source set of 17 € M and C(m) =
{0,g € M :mR = qR}.

From now on, we assume that a ring R has an identity 1 and a right
R-module M # {0}. We have defined strongly cyzlic module in Park
[1] but we shall restate it here. {0} will be denoted 0.

DEFINITION 1. (1) M is strongiy cyclic if M # 0 and M = mR for
any m(# 0) € M (or Vm(# 0),q € M, g = ma for some a € R).

(3) mR is a minimal cyclic submodule if mR # 0 and Vg € M,
0C gRCmR = qR =mR.

(4) mR is a marimal cyclic submodule if mR & M and Vq € M,
mRCqRC M= qR=mR.
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(5) H ¢ M is a strongly cyclic subset of M if Ym(# 0),q € H,
g = ma for some a € R.

The proof of the following Lemma is quite straightforward.

LeMMA 1. H < M is minimal submodule of M — H << M is
strongly cyclic submodule.

DEFINITION 2. Let m(# 0) € M.

(1) S{m) = {0,g € M : m = qa for some a € R} is called the
source set of m e M.

(2) m € M is completely reachable in M if M = S(m)

{3y C(m) = {0,g € M : mR = ¢qR}

{(4) M is a CR-module(module with a completely reachable element)
if M = S(n) for some n(# 0) € M

LEMMA 2. Let M be a right R-module. Then we have the following
statements :

(1) S{m) C S(ma) for any a € R and g € S(m) = S(q) C S(m).

(2) M =S8m) <= me () qR#0.

q(#0)YeM
(3) (1 mR is a strongly cyclic submodule of M if M is a CR-
m{#0YeM

module.

Proof. (1) and (2) are trivial. For (3), we shallshow (] mR=
m(#£0)€ M
qR for every q(# 0) € (1 mR. We note that ¢ € mR for all
m(#£0)eM
m(s# 0) in M and hence ¢ = mb for some b € R. We let t € gF. Then
t = ga for some a € R. This implies ¢t = (mb)a = m(ba) € mR for all
m(# 0) in M. Hence t € (1 mAR. The converse is trvial. [
m{#0)eM

We define new terminologies.

DEFINITION 3. Let m(# 0) € M.

(1) S(m) is minimal set if Vg € M, 0 C S(q) C S(m) = S(q) =
S{m).

(2) S(m) is mazimal set if Vg € M, S(m) C S(q) € M = S(q) =
S(m).
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LEMMA 3. Let m,n(# 0) € M. Then the following statements hold:
(1) mR ¢ nR <= 8(m) D> S(n)

(2) mR =nR < S(m) = S(n).

(3) mR is minimalmax] <= S(m) is maximal[min] set.

(4) mR is strongly cyclic <= mR is minimal.

(5) S(m) is strongly cyclic set <=> S(m) is minimal set

Proof. For (1), (=) we let t € S(n). Then n = tb for some b € R.
But m = ml € mR C nR and then m = nc for some ¢ € R. This
implies m = nc = (tb)c = t(bc). Hence t € S(m). (<) we can prove it
m the same way. For (2), we can prove it like (1). (3) comes from (1)
and (4) comes from Lemma 1. For (5), (=) we let 0 C S(q) < S(m),
Vq(# 0) € M. To prove S(q) > S(m) we let p(#£ 0) € S(m). We note
that ¢ € S(m). Since S(m) is strongly cyclic, we have ¢ = pa for some
a € R and hence p € S(gq). (<) also it is trivial. O

LEMMA 4. Let M be a right R-module and m(# 0) € M. Then we
have the following statements :

(1) ('(m) is a strongly cyclic subset of M.

(2) ('(m) = C(n) <= (i) ma = n and nb = m for some a,b € R

&= (ii) S(m) = S(n)

(3) Let D,, be a strongly cyclic subset of M with m € D,,,. Then
D,, c C(m).

(4) C'(n) =nRN S(n) for any n(# 0) € M.

5y N Cm)={0}

e { #0)EM

Proof. For (1), let p(#£ 0),t € C(m). Then mR = pRand mR = tR.
From this we have pa =t for some a € R.

For (2)(i), (=) : trivial. (<) : To show C(m) C C(n) we let
t € C(m). Then mR = tR. This implies S(m) = S(t). But n = ma
= S(m) < S(n) and m = nb = S(n) C S(m). This means S(m) =
S(n). Hence we have S(n) = S(¢) and then nR = tR. ie., t € C(n).
Similarly, we can prove the converse.

For (2)(ii), (=) : To show S(m) C S(n) we let t € S(m). Then
m = tc for some ¢ € R. But ma = n for some a € R. Hence we have
n = ma = (tc)a = t(ca). This means t € S(n). Similarly, it is easy to
show the converse. (<) : It is trivial.
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For (3), let p(# 0) € D,,. Then we have m = pa and p = mb for
some a,b € R. From (2) we have p € C(p) = C(m).

For (4), C(n) Cc nRNS(n) : Lett € C(n). ThennR = tR. From this
we have n = ta for some a € R. Hencet € S(n) and then t € nRNS(n).
Also, it is easy to check the converse.

For (5), let p(# 0) € C(m) N C(g). Then we have mR = pR and
gR = pR. To show C(m) C C(gq) we let t € C(m). Then mR =
tR. From this we have tR = gqR. Hence t € ((g). Similarly, it
is trivial to show C(m) D C(g). This means that we have shown
p e C(m)NC(q) = C(m) = C(q). ]

2. Characterizations of minimal and maximal cyclic sub-
modules in a module M

THEOREM 5. Suppose that M is not cyclic and let m(# 0) € M.
Then the following assertions are equivalent :
(1) mR is a maximal cyclic submodule of M ;

(2) S(m) = C(m) ;

(3) S(m) N S(q) #0, Yg(# 0) € M == S(m) C 5(q) ;

(4) S(m) C mR ;

(5) S(m) is a btrongly cyclic subset of M ;

(6) C(m)NgR#0,Yq(#0) € M = qEC(m ;

(7) m = qa for some a € R, V¥q(£ 0) € M = (C'(m) = C(q) ;
(8) S(m) NMgR # 0, Vq(# 0) € M = mR = qF.

Proof. (1) = (2) : We shall show S(m) € C(m). Let ¢ € S(m).
Then S(q) ¢ S(m) = qR D> mR. Hence gR = mR and then g € C(m).
S(m) > C(m) comes from Lemma 4(4).

(2) = (3) : Let t € S(m) N S(q). Then we aave t € S(m) and
t € S(g). This implies S(¢) C S(m) and S(t) C S(g). But t € C(m).
This means S(m) = S(t). Hence S(m) = S(t) C S(q).

(3) = (4) : Let q(# 0) € S(m.. Then we have S(g) C S(m) and
then S(g) N S(m) # 0. From assumption we have 5(m) C S(q). Hence
S(m) = S(g). From this ¢ = ma for some a € R and hence g € mR.

(4) = (5) : Let p,g(+ 0) € S(m) C mR. Then we have S(g) C S(m)
and S(q) € S(m). Also p = ma and g = mb hold for some a,b € R.
This means that m € S(p) = S(m) C S(p) and v € S(g) = S(m) C
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S(g). Hence S(m) = S(p) = S(y). This shows that p = gc for some
c€ R.

(5) = (1) : Let mR C qR C M for g € M. Then from Lemma 3(1)
we have S(m) > S(q). Since S(m) is strongly cyclic, ¢ = ma holds for
some a € R. This implies m € S(q) and then S(n) ¢ S(q). Hence we
have S(m) = S(q). This means mR = qR from [.emma 3(2).

(1) = (6) : Let p € C(m) N qR # 0. Ther we have mR = pR
and pR C gR. This means mR ¢ qR and from ¢ssumption mR = qR
holds. Hence g € C(m). (6) = (1) : From Lemn a 4(4) it is trivial.

(1) « (7) : Tt is trivial.

(1) = () Let p € S(m)r qR rIhul we havep S S(m) and p € q]i‘

mR C pR. Sm(e mR is delmaL we have mR = qR
(8) = (1) : Let mR C gR. Then from Lemma 4(4) we have S (m)N
qR # 0. Hence mR = ¢R ]

THEOREM 6. Let m(# 0) € M. Then the fol'owing conditions are
equivalent :

(1) mR is minimal ;

(2) (1 (m) =mR ;

(3) C ) is a submodule of M ;

(4) C(m) n S(q) #0,¥q(# 0) © M = S(m) = S(q) ;

(5) mR < S(m) ;

(6)Vac R 3be R:mab=m ;

(7) mRNgR 0, Vq(#£ 0) € M == mR C gR ;

Proof. (2) « (3) : It is trivial. (1) = (3) : (i) let ¢ € C(mn) and
a € R. Then we have mR = qR. But qaR C qR = mR. Since mR is
minimal, gaR = mR holds. Hence ga € C'(m). (i) to show (C(m), +)
is a subgroup of M we let p,q € ('(m). Then mR = pR and mR = gR
hold. From thls for every a € R we have mb = pa and mc = qa
for some b,c € R. This implies (p — qla = m(t -- ¢) € mR. Hence
(p-q)RCm H holds. Since mR s minimal, we have (p — ¢)R = mR.
This means (p — ¢) € C(m).

(3) = (1) : Let p e C(m)N Sig). Then p € C(m) and p € S(m).
From this we have ¢ = pa € C(m) for some a € R. Hence mR = ¢R
holds.
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(4) = (5) : S(m) C S(ma) holds for a € R. From Lemma 4(4) we
have C(m) N S(ma) # 0. Hence ma € S(m).

(5) = (6) : It is trivial. (6) = (1) : Let ma,mc € mR. Fora € R
db € R : mab = m. From this mc := (mab)c = mal(be).

(1) = (7) : Let p€ mRNqgR. Then pR € mR and pR C gR. Since
mE is minimal, we have mR C gR.

(7) = (1) : It is trivial. O

The following Theorem comes from Theorem 5 and Theorem 6.
Therefore, we shall omit its proof.

THOEREM 7. Suppose that M is not cyclic and let m(# 0) € M.
Then the following conditions are equivalent :

(1) mR is minimal and maxmal ;

(2) S(m) = C(m) is a submodule of M ;

(3) S(m) N S(q) # 0, Vq(# 0) € M = S(m) = S(q) ;

(4) mR = S(m) ;

(5) S(m) is strongly cyclic submodule of M ;

(6) mRNgR #0,Vq(#0) € M = mR = qR

3. MACR-modules and MICR-modules
We introduce new terminologies.

DEFINITION 4. Let M be a right R-module.

(1) R Y{min) = {0,m € M : mR is minimal}

(2) R '(mazx) = {0,m € M : mR is mazimal}.

(3) M is a MACR(mazimal cyclic refinement) - module if Ym(s#
0)e M 3 q(#£0) ¢ R Y(max) : mR C qR.

(4) M is a MICR(minimal cyclic refinement) - module if Vm(#£ 0) €
M 3 q(#£0) € R Y(min): qR C mR.

LEMMA 8. Let M be a right R-module. Then the following state-
ments hold :

(1) Every C R-module is a M 1C'R-module such that M = S(q) for
every q(# 0) € R (min).

(2) mR is minimal cyclic submodule for every completely reachable
elernent m € M.
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(3) Strongly cyclic module = Strong C' R-module =— C'R-module.

Proof. For (1), since M is ('R-module, we have M = S(m) for
some m(# 0) € M. To prove S(q) D M we let p € M = S(m). Then
p € S(p) C S(m). On the other hand, we have y € M = S(m). This
implies that S(q) € S(m) <= ¢R > mR and hence ¢R = mR since
qR is minimal. Hence it holds. To prove that M is a MICR we let
m(# 0) € M. Then S(m) C S(p) for p(# 0) € R~(min) and hence
mR D pK.

For (2), we let 0 C gR C mR for ¢ € R. Thea M = S(m) C S(q).
This implies S(q) = S(m) and hence gR = mR. (3) comes from
definitions. )

THEOREM 9. Let M be a M Ac’R-module. If there is am(# 0) € M
such that C(m) = R~ '(max), then M is cyclic.

Proof Let ¢ € M. Since M is MACR-module, there is a p €
R~1(maz) such that ¢R C pR. From this we have g € qR C pR=mR.
Hence M = mR. tJ

THEOREM 10. Let M be a M IC R-module. Then we have the fol-
lowing statements :

(1) M is a CR - module <= 3 m(# 0) € M such that C(m) =
R (min).

(2) M is strongly cyclic <= 3 m(# 0) € M such that S(m) =
R~ Y(min).

(3) M is strong CR <= M is strongly cyclic.

Proof. For (1), (<) Let m € M such that C(1n) = R~ (min) . We
let g(# 0) € M. Then 3 p(# 0) € R™!(min) such that pR C ¢R.
From p € C'(m) we have mR = pR C qR. Henc: ¢ € S(m) and then
M = S(m).

(=) we note that M = S(m) for some m(# 0" & M. From Lemma
8(2) we have m € R™'(min). It is trivial to show C'(m) = R Y(min)
from Lemma 2(2).

For (2), (+=) Let m € M such that S(m) = R~ }(min). Claim :
C(m) = S(m). (proof) since mR is minimal, we have mR = C'(m)
S(m). To prove C(m) D S(m) we let ¢ € S(m). From assumption
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3 p € R™1(min) such that pR C gR. From this we have S(p) C S(m)
and then mR C pR C qR. Hence we have mR = ¢R and ¢ € C(m).

Combining the claim and hypothesis, we have C(m) = S(m) =
R~Y(min). Also, from (1) we have M = S(m). Now we shall show
that M is strongly cyclic. Let p,q € M = C(m). Then we have
mR = pR and mR = qR. This implies p = ga for some a € R.

(=) We note that M = S(m) for every m(# 0) € M since M is
strongly cyclic. We shall show R~!(min) = M. Let ¢(# 0) € M.
Then 3 p € R™!(min) such that pR C qR. Since M is strongly cyclic,
we have M = pR. Hence pR = gR holds and ¢ ¢ R™!(min). From
this we have S(m) = R~ (min). O

From Theorem 6 and the above Theorem we have the following
Corollary.

COROLLARY 10.1. If M is a CR-module, then R~ (min) = C(m) =
mkR.

4. Examples

EXAMPLE 1. Let Z3z = { 0,1,2 }. Then

(1) Zs is strongly cyclic Zs - module since 1Z3 =: Z3 and 2Z3 = Z3 .

(2) 1,2 € Zj are completely reachable elements of Z3 since Zz = S(1)
and Zs = S(2).

(3) 1Z3 and 2Z3 are minimal submodules of Z3 from (2).

(4) R™1(min) = {0,1,2} = S(1) = S(2). Hence Z3 is strongly cyclic
like we have mentioned in (1).

(5) Z3 is a MICR-module since 1Z3 C 1Z3 and 2Z3 C 2Z3.

EXAMPLE 2. Let Zy = { 0,1,2.3 }. Then

(1) Zy4 is not strongly cyclic Z4 - module since 2Zy4 # Z4.

(2) 2 € Z4 is a completely reachable element of Z4 but 1,3 € Z4 are
not completely reachable elements of Z4 since Zg4 = S(2) but Z4 # S(1)
and Zg # S(3).

(3) 2Z4 is minimal submodule of Z4 from (2) and also a maximal
submodule of Z,4 since 2 is a prime dividing 4.

(4) R~ Y(min) = {0,2}.

(5) Zy4 is a MICR-module since 274 C 124, 2Z4 C 274 and 2Z4 C
3Z4.



Strong-Max ~yclic submodules 9

(6) /A m(s# 0) € Z4 such that S'(m) = R !(min) since S(1) =
{0,1,3},5(2) = {0,1,2,3} and S(3) = {0,1,3}. Hence Z4 is not
strongly cyclic llke we have ment 10ned in (1).
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