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ON THE GROMOV-HAUSDORFF
CONVERGENCE OF GEODESICS

Young Wook Kim

ABSTRACT. In this paper we construct a sequence of spaces which
has Gromov-Hausdorff limit such that a geodesic in the limit space
is not realized as a limit of geodesics in the spaces of the sequence.
This contrasts with the result of Grove and Petersen in [1] where
they proved otherwise for Alexandrov spaces with common curvature
bounds.

1. Introduction

The Hausdorff convergence of metric spaces is a fundamental concept
not only in the study of Riemannian geometry but in the study of metric
differential geometry in general. Since it had been improved conceptually
from the original idea of Hausdorff and introduced in 1981 by Gromov, it
gave lots of stimuli in the geometry of metric spaces and much attention
has been drawn to the spaces with curvature bounds. Among them the
spaces with lower curvature bound share many nice properties, of which
an example is the property that such spaces are closed under the Gromov-
Hausdorff(or the GH) limit. This property suggests a possible natural
category for doing Riemannian geometry.

In doing metric geometry in such categories, many problems of charac-
terizing spaces — for example sphere theorems — involve careful study
of metric properties and especially the study of behavior of geodesics.
The reason that Hausdorff convergence fits so well with the geometry of
metric spaces lies especially in the fact that, in the GH-limit, minimal
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geodesics converge to minimal geodesics. This fact is so powerful that
one hopes the converse to be true. That is, the geodesics in the limit
space is a limit of geodesics of the sequence space. Such study was done
by Grove and Petersen and was used crucially in solving problems re-
lated to the conjecture of Alexandrov.[1] In this paper they show that,
for Gromov-Hausdorff limit of a sequence of Riemannian manifolds of
same dimension with common curvature (upper and lower) bounds and
a diameter upper bound, a geodesic in the limit space is always a limit
of geodesics in the sequence manifolds. Here the essential property is
the curvature bound. Now this fact poses a question if it is still true
without the common curvature bound. In this paper we show that this
is not true in general. In fact, we present an example of a sequence of
2-dimensional Riemannian surfaces converging to a metric space which
contains a minimal geodesic which can be no limit of minimal geodesics
in the sequence surfaces. This example does not have a common curva-
ture lower bound but they are compact smooth surfaces with common
diameter upper bound. (Also common curvature upper bound.)

The convergence problem of geodesics is subtle and even the GH-limit
of (non-minimal) geodesics is not a geodesic in general as is seen in the
following example.

EXAMPLE. Consider a closed unit disk A = {(z,y,2) | 2°4+¢y* < 1,z =
0} in R® and consider the boundary of the e-tube of the disk.(¢ > 0) As
€ — 0, the tubular hypersurface converges to a double disk which is the
identification of two closed unit disks along the boundary circles. In the
tubular hypersurface, the circle of symmetry S, = {(xz,y, 2) | 2* + ¢ =
(1+¢€)?, z = 0} is a geodesic, but the limit curve Sy = {(z, v, 2) | 22+y? =
1, z = 0} in the double disk is no more a geodesic.

Now the e-tube is not a C* manifold but we can deform it a little
without breaking the symmetry and get C* Riemannian manifolds which
satisfies everything in the example above.

2. Contruction of the example.

For a given metric space X, we will denote by aX (a > 0) the metric
space X of which the metric is rescaled by the factor a. That is, d,x =
o - dx.
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First, we construct a sequence X, of metric spaces. X, is nothing
more than an interval [0, 1] with standard metric. Now, let Y,; be the

ok

n=12,...andk =0,1,2,.... To define the base space X5, we consider
a disjoint union X and Y7; and identify the points 1/2 and 1 in X, with
p}; and p}; in Yi; respectively. Then we take the inner metric induced
from the metrics on X; and Yj; which defines the metric on X,.

Now for X,,. The spaces X,, is defined from the disjoint union of the
spaces X1, Yin, Yon, ..., Yy, by identifying the points as follows: (Figure
1)

0 in X, with pJ_,

1
interval (1 - — 2—nX 1 with their endpoints denoted by p%; and p!, for

: St 0 0 0
—in X, with p{,,95,,. .., Pon,
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2
1
+3 in X; with p} |
1 : 1 )
5 + on in X; with p}_.
And the metric on X, is the inner metric induced from the standard
metrics on X, and Y;,’s (1 = 1,...,n).

Now the space X is the disjoint union of X; and Y, (n = 1,2,...)
where the points are identified as follows:

0 in X; with pJ_,

1
5 in X; withp _ (n=1,2,...),

1 1
'2“ + 5 n X] Wlth p(l)ocﬂp%oo?

11
>t o with p,

And the metric on X, is the induced inner metric.
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Now the metric spaces X,, are compact, locally compact inner metric

spaces. As n — 00, the sequence { X,,} converges, in GH-distance, to the
metric space X

Yi2

FIGURE 1.

3. Discussions

In this example, consider the curve X; ¢ X. X is a minimal geodesic
in Xo. Among the curves in X, joining 0 and 1 of X; C X, (or any pair
of points sufficiently near them) is a unique minimal geodesic which is the
shortest one and no others are geodesics. Moreover, these geodesics do
not converge as n — oo to the geodesic X; C X.,. Therefore there exists
no sequence of minimal geodesics of X,, which converges to X, C X, o-(In
fact this is true for any closed interval which contains the point 1/2 in
X1 as an interior point. Therefore there is not even a sequence of locally
minimizing geodesics which converges to X in Xo.)

Here X, are simply 1-dimensional inner metric spaces. These spaces
can be embedded isometrically into R? ¢ R3 in an obvious manner. Fix
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0 < € < 1 and consider the boundary surfaces of ¢/2"-tubes in R® of
X,. Smoothing them slightly give ¢ Riemannian surfaces which is
symmetric with respect to R?. Denote it by Y,. Y, converges to X in
GH-topology as n — oo. The fact that X; C X is a minimal geodesic
which is a limit of no minimal geodesics of Y,, is obvious from above.
In fact Y, can be made so that the surfaces have non-positive Gaussian
curvatures.

The limit space not being simply connected is not essential in this
phenomenon. There is such an example consisting of metric spaces where
all the spaces are simply connected. (But we are not sure if we can find
such a sequence of Riemannian manifolds.) The author would like to
thank Prof. K. Grove for the discussions regarding the problem.
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