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APPLICATIONS OF ERGODIC THEORY TO
PSEUDORANDOM NUMBERS

GEON Ho CHOE, CHIHURN KM AND DoNG HAN KiM

ABSTRACT. Several aspects of pseudorandom number generators are
investigated from the viewpoint of ergodic theory. An algorithm of
generating pseudorandom numbers is proposed and shown to behave
reasonably well.

1. Introduction to ergodic theory

The theory of dynamical systems studies the long term statistical be-
havior of the transformation 7' under iterations. The theory of mea-
surable dynamical systems defined on a probability space is called the
ergodic theory. Invariants are used to distinguish non-isomorphic dy-
namical systems in a given category of dynamical systems. For exam-
ple, (measure theoretic) entropy completely classifies Bernoulli shifts. In
other categories of dynamical systems we do not have enough knowl-
edge of the complete invariants for the classification. In this paper we
investigate the possible applications of ergodic theory to the problems
related with pseudorandom number generators. Some of them will be
regarded as discretized versions of measure preserving transformations
on probability spaces.

Let (X, u) be a probability measure space. A map 7T : X — X is
said to be p-preserving or p-invariant if u(T-}(E)) = u(F) for every
measurable subset £ C X. The condition is equivalent to [, f(z)dy =
Jx f(T'(z)) dp for every integrable function f. If u is given by du = pdx
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for an integrable function p(z) > 0 with [ pdz = 1, then the measure is
said to be absolutely continuous and p is called the density. Suppose T
is p-invariant. It is called ergodic if E satisfies T-!(F) = E modulo mea-
sure zero sets if and only if 4(E) = 0 or 1. Equivalently, if f(Tz) = f (z)
for almost every z then f is constant almost everywhere. For general
references on ergodic theory, see [Pe],[Wal,[CFS]. The following are ex-
amples of measure preserving transformations.

A trivial example of an ergodic invariant map is given by a translation
Tz = {z + o} for some irrational & where X = [0,1). Another trivial
example is T'(r) = {2z} on X = [0, 1) where {t} is the fractional part of
a real number ¢. The Lebesgue measure is the invariant measure in both
cases.

A nontrivial example is given by the logistic map Tz = 4z(1 — z) on

X = [0,1] with its invariant measure ——l(r—)dx. It was first discov-
™ T i—T

ered by von Neumann and Ulam. It is known that the same measure is
invariant under transformations obtained from Chebyshev polynomials.

An example with infinitely many discontinuities is given by the Gauss
map T'z = {1} with its invariant measure 572 . These are most of the
known examples of absolutely continuous measures. It is not an easy
task to find an explicit formula for invariant measure corresponding to a
given map 7.

The first fundamental fact in ergodic theory is the following .

Fact 1.1. (The Birkhoff Ergodic Theorem) If T is p-invariant and f
is integrable, then

.1
lim —
n—oo 711

S5 = f(2)
k=0

for some f* € L'(X, u) with f*(Tz) = f*(z) for almost every z. Hence
if 7" is ergodic, then f* is constant and equal to fX fdp.

Let 1g(z) denote the characteristic function of a measurable subset
E c X. Choose f(z) = 1g(z) in the Birkhoff Ergodic Theorem. Then
we see that if T is ergodic then the average number of times that the
points 7%z visit E is equal to the size of the subsei E. In other words,
ergodicity implies the uniform distribution.

One might object to using the Birkhoff ergodic theorem in estimating
an integral, but this may be regarded as the idea behind the Monte Carlo
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simulation method since the error between 13170 f(T%z) and [, fdu
can be estimated by standard statistical methods. For a reference for
Monte Carlo simulation see [Fi].

Now we consider the transformations defined on the unit interval X =
(0,1}. If an invariant measure yu is of the form du = pdz for some
differentiable map 7', then

(v)
() = Y
g yd;{x}) T ()]

For piecewise differentiable maps on the unit interval the existence of
absolutely continuous invariant measures is proved under various similar
conditions. For the existence of absolutely continuous ergodic invariant
measures on the unit interval, see [AF], [Bow], [MPV], [Re], [Ro], [Si].

Here is a brief introduction to the definition of randomness that was
first formulated by C. Shannon[Sh] in 1948. Mathematical formulation of
randomness in an experiment may be given as follows: An experiment ¢
with possible outcomes a; with probability p;, i = 1,2, ..., N, corresponds
to a partition of a probability space consisting of finite elements a;’s with
probability measure i defined by p({a;}) = p;. In general we can define
entropy for a partition of a probability measure space as follows: Let
§ = {E,...,En} be a finite partition of a probability space (X, .A, u)
with E; € A for every i. Then we define the entropy of the partition by

H(§) = Zpi logi = —Zpilogpi

where p; = p(E;) where the base of the logarithm equals 2 throughout
the article.

Given two partitions &, and & we let £, V & be the partition consisting
of the subsets of the form B N C where B € £ and C € &. Suppose
T : X — X is a measure preserving transformation. For a finite partition
& we define the entropy of the transformation with respect to & by

R(T,€) = lim lH(g VTV ... v gy,
n—oe 7
It is known that the limit exists. Finally we define the entropy h(T) of
the transformation T by

hT) = sup h(T,¢€)
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where £ ranges over all finite partitions €.

A set £ of possible outcomes or source symbols is called an alphabet.
Let X = []7, ¢ be the product of the alphabet ¢ = {ay,...,an}. We
consider the shift transformation 7: X — X given by (T'z), = x,., for
every n. Suppose there is a T-invariant measure pon X. For example, u
is the product measure of a measure v on ¢ defined by v({a,}) = p,. In
this case T is called a (one-sided) Bernoulli transformation. It is known
to be ergodic and h(T) = — 3, p; log p;.

Suppose that we are given a differentiable map 7 on the unit interval.
For |« — y| ~ 0 we have

T(z) = T(y)| = |T'(2)| - |z — y],

and
n—1
IT"(@) — ()| = [[IT(T5)] - [z — o]
=0
hence

1 n n ~ 1 o 4 %

= log [T"(z) — T"(y)| ~ nglong(Tr)L
If we let yu be the ergodic invariant measure for 7' then the right hand
side converges to fol log |T"(y)|du(y) by the Birkhoff Ergodic Theorem.
Therefore we see that |7"(z)| measures the extent with which two neigh-
boring points diverge and log |7"(x)| measures the exponent of the speed
of the divergence, which is called the Lyapunov exponent. Oseledec’s
theorem states that the Lyapunov exponent is the entropy.

2. Shannon-MacMillan-Breiman Theorem

There are many tests for randomness and entropy test is one of them.
For a recent extensive experimental result see [LCC|. In ergodic theory
the entropy of a map is defined as the average rate of randomness in
the complexity of the behavior of the map with respect to the given
invariant probability measure. Consider the shift transformation 7' :
X — X, (Tz); = x5y where X = [[7°{0,1}. A typical point in X is a
randomly generated sequence of 0 and 1. The traditional entropy test
for randomness is not sharp due to the fact that entropy measures the
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randomness of the sequence on average. To overcome such a difficulty an
equivalent pointwise formulation of entropy is used.

Suppose there is a shift invariant probability measure 2 on X. A block
b is a finite string of symbols and |b| denotes its length, i.e., |b| = n if b
is of the form b = b;b;...b,. For each n there are 2" blocks of length n,
some of which may have measure zero. Take a block b of length n. Put

Py = Prob(z, = by,... ,25:n_1 = b, for some s).

It does not depend on s since the probability is shift-invariant. It is
the probability of observing the block b in a typical sequence generated
by the given PRNG and is equal to the measure of the cylinder set
{re X :z=b,...,z, = b,} since the measure is shift invariant. If
we assume that the shift transformation gives an ergodic process, then
the Birkhoff Ergodic Theorem implies that P, is nothing but the relative
frequency of observing b among all possible observations of blocks of
length n in X. The entropy h, with respect to p is defined by
1
h, = lim % Z B, long.

n—oo
|bl=n
By definition the entropy is a global quantity to measure the random-
ness of the sequence from a random number generator. The local de-
viations from the full randomness might be invisible when averages are
taken and the small discrepancy in the behavior of a generator cannot
be detected. Therefore an equivalent pointwise formulation of entropy is

needed. Let P,(z) be the relative frequency of the first n-block z,z . .. z,,
in the sequence © = z;z5z3. .., in other words,

1
Pn(x):I}i}};o}#{ost<K:$1+t:$b-w 1$n+i:$n}

Note that P,(z) = P, where b is the first n-block in z, i.e., b = z1 ... z,,
hence P,(z) depends only on the first n digits of z. The Birkhoff Ergodic
Theorem guarantees the existence of the limit. Note that if z and y satisfy
the conditions x; = yi, ... , T, = Y, then P,(z) = P,(y). Now we have

Fact 2.1. (Shannon-MacMillan-Breiman Theorem) For almost every
z, i.e., with probability 1,

.1 1
h, = T}l_'lgglog Pla)

177



Geon Ho Choe, Chihurn Kim and Dong Han Kim

For the proof, see [Pe].
In short, for sufficiently large n the random variable

Y.(z) = 1 log

measures the randomness of the sequence z, hence we choose Y,, as a test
statistic. For example, the example in [KW] can be shown to have small
entropy hence it is not a good generator.

For the fully random sequences the pointwise values Y,(z) is constant
and equal to log 2, therefore the variance is zero and it is hard to gauge
the relative deviation from the theoretical predictions for E(Y,). To
overcome such a difficulty we use a modified sequence of entropy less than
log 2, which is generated from a (p, 1 — p)-Bernoulli process constructed
out of the given uniform PRNG that is supposed to behave truly random.

Suppose we have z obtained from the (p,1 — p)-Bernoulli process,
0 < p < 1. For notational simplicity, put py = p, p; = 1 —p. Then for
r=1x...Z,... we have

Pn(x) = Pxy " P,

T'hen
Yo(z) = 1lo (p Pz,) = ! En logp
n g T In — g i

hence

1 n
E(Y,) =—— > E(logps,)
i=1

(2.1) = —FE(log p,,)
= —plogp — (1 — p)log(1 - p)
= —plogp —qloggq

where ¢ = 1 — p, and
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()

= > E(logp;, logp,,))
i=1 j=1

n

= " E(logp,)E(logp.,) + Y _ E ((log ps,)?)
itj

i=1

I

< E(log ps,) ) — Y (E(logp,,)” + Z E ((log ps,)?)

= n*(E(logps,))* — n{E(log p,,))* + nE ((log p.,)?) -
Therefore

Var(Y,) = E(Y}?) — E(Y,)?

n

(2.3) = % [—(E(log p:,))* + E((log p: )°)]
1

=~ [—(plogp + qlogq)* + p(log p)* + q(log ¢)*

To use the result as a test for PRNG’s, first we compute the ex-
pectation E(Y,) and the variance Var(Y,) theoretically. Next, we esti-
mate E(Y,) experimentally. Let T be the shift transformation defined by
(Tx); = zj41. According to the Birkhoff Ergodic Theorem the average

1 N-1
5 2 YalT'),
i=0
converges to E(Y,) as N — oo, hence it is expected to approximate
E(Y,) for sufficiently large N. Their theoretical distribution should be
close to the normal distribution with its mean and variance given as
above. Therefore, to test a PRNG, we first use it to construct a stochastic
process and have it generate a typical sequence . Then consider the
random variable Y, for some reasonably large n, for example, n = 10,
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and estimate experimentally Y, (z), Y,(Tz),... , (TN ~1z) as accurately
as possible for very large N. And finally compare it with the theoretical
prediction for the model under consideration.

Since the random variable Y, centers around the entropy value, we
take the sample of a large number (say, K = 10°) of nonoverlapping
blocks of equal length n (the blocks in each row of the diagram given
below). More precisely, to estimate P,(b;---b,) we use the first row,
L.e., the n-blocks given by [b; - b,], [bas1---banl, ..., [bek—1ynt1 -+ bien]
and count the number of times that the block [t - -b,] appears and
compute the relative frequency. Similarly, we start with the n-block
[ba - - - by41] on the second row and obtain P,(b; - -- b, ;) using [bg - bay1],
busa-bonia], oo, [Bi—1)n-2 " *brny1] , and so on. Thus N values of Y,
from N rows are obtained. These values are correlated, so to reduce the
correlation we may use only some of the rows, for example, use nk-th rows
for k = 1,2,...,[%]. From the computer experiment [Z] values of P,’s
obtained from those rows seem to have negligible correlation coefficient.

K blocks of length n

by oo bt [ bz R
———
n
K Dblocks of length n
bN e bn+N—1 I bn+N ........................ lb(K—l)n%—N ......
——

n

The pointwise entropy test introduced in the above has a drawback.
There is an unavoidable error in estimating P,(z) for any finite sample
size K. Hence we need to take sufficiently large N to minimize the error.
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In practice, most pseudorandom number generators are very good so
we need exact estimates. To achieve that goal we may modify the defi-
nition of F,. Let P,(b) denote the relative frequency of the arrearances
of the n-block b in the finite string b, ...b,.y_;. Then the expectation

of ¥, is given by
1 K=
Z (T G g
— J A 2n ’

=35 () (¢ b

3. PRNG’s from ergodic theory

and

Let T : X — X be a transformation on a probability space X. By
partitioning X into
k-1
xX=JE
i=0

we can associate to every point z € X an infinite sequence of symbols
from the alphabet {0,1,... ,k — 1} by the relation

z s (ag,a1,as,... ,ay,,...)
where a, € {0,1,... ,k — 1} and T"z € E, . If the given partition
{Eo,...,Ex_1} generates the o-algebra, then the randomness of T is

inherited by the shift map on the sequence space and this is how to
obtain a pseudorandom number generator from a dynamical system. For
example, if X = [0,1) and Tz = 2z (mod 2) and if we choose the
partition E; = [0, %), Ey = [%, 1), then the above method gives a binary
expansion of a real number 0 < z < 1. The transformation 7" is measure
preserving and ergodic with its entropy log 2 and the resulting shift map,
which is nothing but the fair coin tossing, displays random behavior. If
we had chosen other partitions, the extent of the randomness is less than
optimal since by definition the entropy of T" is the optimal upper bound
for any entropy with respect to a given partition. In the above example,
the partition is optimal.
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EXAMPLE 3.1. (Linear congruential generators) The linear congru-
ential generators defined by z,, = az,_; + b (mod m) are modeled after
the ergodic transformations z — az (mod 1) on the unit interval, which
is invariant with respect to the Lebesgue measure. Here the partition of

12

the unit interval is given by m subintervals [0, %), [ =), o, [ET;—I, 1).

In many practical implementations, m = 23! or m == 252,

EXAMPLE 3.2. (Toral automorphisms and lagged Fibonacci genera-
tors) Consider the transformations defined on n-dimensional torus given
by an (invertible) integral matrix A with det A = :£1. In practice most
of the elements of A are 0 so that the iteration of multiplication of A is
fast. Let X = R"/Z" be the n-torus, which is identified with the unit
cube in R™. For every integral matrix A we define the transformation 7’4
on X by Tsx = Az. Since |det A| = 1, the transformation T4 preserves
the Lebesgue measure on the torus. It is known that T, is ergodic if and
only if any eigenvalue of A is not a root of the unity. It is known that
the entropy of T4y equals the sum of log A with |Al > 1, where X is an
eigenvalue of A.

Suppose a matrix A € GL(2,Z) has two eigenvalues A; and A, with
|A1Ao| = 1. This transformation is called hyperbolic if |X\;| > 1 and |Ay] <
1. The hyperbolic toral automorphism has two distinct eigenvectors.
Under the action of A distances in the plane expand to one direction by
a factor of |A| and contract to the other direction by [)o|.

For the matrix A = [1}] we can find a partition of the torus that
gives the maximal value for the entropy. Let P = {P, P, ..., P} be
a partition of the torus for A, for example, k vertical strips of equal
width for some large k, say k = 2%2. Each z € T? defines a sequence as
explained previously. As long as x never lands in the boundary of P this
produces a single well-defined sequence. No two points in T? correspond
to the same sequence.

In general, we use integral matrices with |det A| = 1 so to use the
invariance of the Lebesgue measure on the torus, which in turn im-
plies the uniform distribution, and we choose A with large |A;|. The
coded/discretized version is nothing but a Fibonacci generator z,,, =
ZTpi1 + x, (mod m). We can generalize the idea to the n-dimensional
case. For the related results see [MZ, Ma).
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EXAMPLE 3.3. (Inversive congruential generators) From the view-
point of the ergodic theory we try to explain why purely algebraic algo-
rithms such as inversive congruential generators ICG (p,a,b, zy) defined
by z, = az,_;"'+b (mod p) display random behaviors. In the finite com-
mutative group Z, \ {0} we have the identity r” V=21, hence ! = 272,
Therefore a typical ICG is given by x,, = amp 1 + b (mod p). This algo-
rithm corresponds the interval map Tz = app“ 7%+ b (mod 1). Since
p is large, we expect that the distribution is approximately equal to the
Lebesgue measure and that the entropy is large from the Lyapunov ex-
ponent formula so that the coded sequences display randomness with
respect to any reasonable partition of the unit interval. Almost the same
argument can be applied for the PRNG’s obtained from polynomials with
steep slopes.

4. A piecewise linear map and a new PRNG

Now we propose a new class of generators based on observations in
ergodic theory. Consider the following piecewise linear map on the unit
interval defined by

f(z) = ~2(a —

2n—1) =-2"c+2 for —<z<

2n oan—1"

It 1s obtained by modifying the map L(z) = log —(mod 1),0<z <1,

hence we call it the linearized logarithmic map.
If i is the Lebesgue measure, then for an open interval I = (a,b),

p(f () = u(fhl(a b))
- 'U(U 2n 2n 5n—1"* Qg + 2711—1 ))

a 1
= Zﬂ 2n 1’—2_n+2n—1))
Since the Lebesgue measure is translation invariant,
B o0 b a o
pFHI) = 3 il = 50 = D =5l =b) = (1)
n=1 n=1
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Generators Seed g Increment b ] Period
L1 3838758767 | 1965377237 | 2103452906
L2 3552705551 | 1281215333 | 1625984253
L3 2631754467 | 904400631 | 1209855518
L4 443889273 | 1710812443 | 1483585494
L5 4044416047 | 411920269 | 1497237346

TABLE 1. Periods of LinLog’s for different choices of z; and b

Hence the Lebesgue measure is its invariant measure. From the Lya-
punov exponent formula its entropy equals o, 5 log2 = —g-log 2. To
use f as a model of a pseudorandom number generator, we discretize it
as follows: we will scale up its domain and simplify the map where the

slope of the map is too steep. Define the piecewise linear map as follows:

oy = ] Pets (mod2%),  0<e<2
- —932-n, +s (mOd 232), "<z < 2T'+1, 1<n < 31,

for some integer 0 < s < 2%2 — 1. We call it the linearized logarithmic
generator(LinLog).

Its algorithm is faster than most of other generators due to the nature
of computer hardware structure, i.e., LinLog shifts a binary number z =
(z1,22,...,T3), ; € {0, 1}, consisting of 32 bits to the left until the first
nonzero bit is placed in the first slot.

To find generators with sufficiently long periods suitable choices of the
increment b are needed. Some increments having long periods are given
in Table 7?7. They were obtained by extensive computer experiments.

To test the uniform distribution of the pseudorandom numbers gen-
erated by PRNG’s we apply the chi-square test from statistics. The
following tables (Table 2 — Table 4) show the results of applying four
different types of chi-square tests on each of sequences generated by Lin-
Log’s and by some standard LCG’s. Each generator has been tested with
block lengths n = 4,5,6,7,8. The number of observations in the tests
A, B,C and D are 247 29°n 21441 and 21947 regpectively, where n is the
block size. In the chi-square test only the first bit among 32 bits was
tested. The symbol x indicates that the statistic belongs to 0 — 1 % or
99 — 100 % area, the symbol A indicates that the statistic belongs to 1
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-5 % or 95 - 99 % area, and the blank spaces imply that the generator
passes test.

Now we apply the pointwise entropy test that was introduced in Sec-
tion 2. We choose N = 10°, K = 10° for each n-block. In L3 only the
first bit was tested and the whole bit was tested in the others. Theoret-
ical values of expectations and standard deviations for some n are given
in Table 4.

Generators ANSIC MSC RANDU
Blocksize || 4 |5 6 |7 | 8| 4|56 |7 |8Ii4|5|6]|7]|8
A A YANN AN AN|ATATA A
B A X
C X A FANN I A
D X X x| x
TABLE 2. Chi-square test of LCG's
Generators 11 L2 L3
Blocksize | 4 | 5 | 6 |7 (8|4 |5 |67 8(4|5|6]|7!8
A
B VAN WVANN VAN x | A x
C x | x x | x
D X x ANl x | x| x
TABEL 3. Chi-square test of LinLog
Generators L4 L5
Blocksize | 4 | 5|6 |7 |8|4]5|6]|7]|8
A A Al x| x VAN VAN
B x | x Al A X
C x | A|A x | A
D FAN X | X | X | x

TABLE 4. Chi-square test of LinLog
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Block length n ] Expectation of Y, | Standard deviation

8 0.99976997 0.00910075
9 0.99959008 0.01144418
10 0.99926079 0.01455424
11 0.99865296 0.01866667
12 0.99752084 0.02406902
13 0.99538672 0.03104823

TABLE 5. Theoretical predictions of Y,, for K = 10°

l Block length n

Estimation of E(Y;)

8 0.99978845 | 0.99983396 | 0.99977429 | 0.99983305
9 0.99963740 | 0.99965458 | 0.99963268 | 0.99964900
10 0.99916076 | 0.99939345 | 0.99960046 | 0.99918736
11 0.99859457 | 0.99877539 | 0.99868825 | 0.99875253
12 0.99741595 | 0.99758465 | 0.99759730 | 0.99747080
13 0.99533120 | 0.99548402 | 0.99523713 | 0.99537788

| Generators | ANSIC | MSC RANDU L3 |

TABLE 6. Experimental estimation of E(Y,), N = 105, K = 10°

To find a very good generator needed in today’s serious computer
simulations more extensive experimental work for the coice of seed and
increment will be required.
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