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GENERALIZED RUNGE-KUTTA
METHODS FOR DYNAMICAL SYSTEMS

DonGg WON Yu

ABSTRACT. A numerical method is proposed for dynamical systems.
We utilize the fact that special matrix exponentials can be exactly
evaluated by the intrinsic library functions. Numerical examples are
given, which show that the relative errors of the proposed method
converge to a small constant and that the method faithfully approx-
imates the dynamics of the nonlinear differential equations.

1. Introduction

We consider numerical approximate solutions for the system of non-
linear ordinary defferential equations

(1.1) Y'(t) =1£(t,y(®),  ¥(0)=yo,

where f(¢,y) is a continuous vector-valued function on [0,00) x R™
satisfying a Lipschitz condition.
Using z(t) = exp(—tA)y(t), (1.1) is transformed into

(1.2) 2/(t) = exp(—tA){f(¢,exp(tA)z(t)) — Aexp(tA)z(t)}, z(0) = yo.

Lawson [3] applied the classical fourth order Runge-Kutta method to
(1.2) and reverted to the original state by z, = exp(—t,A)y.. In this
way, Lawson’s generalized Runge-Kutta method was obtained.

The choice of A is important. Lawson [3] did not demand that
of /8y — A = O, but merely wished to make the eigenvalues of 0f /0y —
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A are small enough so that accuracy rather than stability should dictate
the step-size in solving (1.2).

The calculation of exp(+¢A) is crucial for implementation of Law-
son’s generalized Runge-Kutta method. Lawson [3] and Ehle & Law-
son [1] substituted the Padé approximation for the matrix exponential
exp(+tA). Lawson [3] observed that the diagonal Padé approximation
provides a set of unconditionally stable approximations to the matrix
exponential function and indicated that Lawson’s generalized Runge-
Kutta method is not a suitable form for practical computation due to
the presence of matrix exponentials.

In this paper, we propose a numerical method in which the matrix
exponentials are exactly expressed by the library functions and show
that the proposed method gives reasonablly good numerical results.

The paper is organized as follows. In Section 2, we prove that exp(W)
can be exactly expressed by the library functions if W is a special
scalar skew-symmetric matrix. In Section 3, we give a method how
to choose such a scalar skew-symmetric matrix W. In Section 4, we
analyze the order of convergence of the proposed method. In Section 5,
numerical results of two examples are given. Example 1 shows that the
relative error of the proposed method converges to a small constant as
n increases. Example 2 shows that the dynamics of the approximate
solutions obtained by the proposed method can faithfully describe the
true dynamics of nonlinear systems.

2. Preliminaries

It is clear that the set of all m x m skew-symmetric matrices becomes
a T—E";—_L) dimensional vector space with a basis B = {S;;}, where
1<j 1<i<m-1 2<j<m, and S ; is a matrix whose
(¢,7)-element is —1, (j,%)-element is 1, and others are 0.

Choose a set of mutually commutable matrices St Sigzs - e Si, dq
in B and consider the scalar skew-symmetric matrix of the form

q
(2.1) W=wl+ Y S, sy,
k=1
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where [ is the identity matrix and w, p1, u2, ..., 444 are real constants.
Such a matrix W will be called an s-scalar matrix.

THEOREM 2.1. For any s-scalar matrix W given in (2.1), let exp(W) =
(et) . Then each element e,,, is expressed as

exp(w) if l=n (# i and # Jk),
exp(w) cos(puk) if l=n=1,
— exp(w) sin(ux) if =1 and n=j,
Cin = exp(w) sin{u) if l=jr and n =iy,
exp(w) cos( k) if l=mn=j,
L 0 otherwise,

for k=1,2,...,q

Proof. Let I, ; be a matrix whose (i, ix)- and (jk, jx)-elements are
1, and others are zero. Then we have

(Sik,jk)2n - (—l)nIikyjki (S'ik:jk)2n+1 = (*l)nsik,jk?

[e'e) 2n+1
i H
eXP(“kSik,jk):I+{Z( l)n k } ik Jk+{z( )n(z k+ 1)!}Sikvjk
=1-1I ; +C05(ﬂlc)11k,1k + sin(p) S, 5y -

Since Iik,jksiz,]z =0, Ilk,JkIu,jt =0, and Sik,j;~S’iz,jz = O for mutu-
ally different iy, jk,%;, and j;, we obtain

q
exp(W) = exp(w) [ [ exp(iseSi, 1)
k=1
q q q
— exp {I Z Iikyjk + Z Cos(ﬂk)Iik,jk + Z sin(uk)S,-hjk} .
k=1 k=1 k=1
This completes the proof. O
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3. GS processes

In the previous section, we have shown that if W is an s-scalar
matrix as in (2.1), then exp(tW) can be computed exactly by library
functions. We will give a way how to choose such an s-scalar matrix W
from (1.1).

Suppose that %f(t, 0) is a constant matrix A. Then (1.1) is rewrit-
ten by

(3.1) y' = Ay(t) +u(t,y(t), y(0) = yo,
where u(t,y(t)) = £(t,y(t)) — Ay(t).
If A has real eigenvalues A;, 1 < j < p, and complex eigenvalues

Apritipg, 1 < j < g, where p+2q = m, then there exists an invertible
matrix

(3.2) P= [Vl,...,vp,wl,vp+1,...,wq,vp+q].

Here v; and v, ;+1iw; are eigenvectors or generalized eigenvectors
of A corresponding to \; and Ap+ts + iptj, respectively. Furthermore,
there is only one way of expressing A as S+ N, where S is semisimple,
N is nilpotent, and SN = NS (see (2] p. 116 and [4] p. 39). Hence
the Jordan canonical form of A is splitted as

A=P1AP=P 'SP+ P INP=S+N,
where S is represented by
_ P q
S=Y "ML+ Y peilpizi-1pe2 + 15Sps25 1125}
=1 j=1

and said to be an s-diagonal matrix.
Transforming (3.1) by y(¢) = Px(t), we have

(3.3) x'(t) = {S+ N}x(t) + P u(t, Px(t)), x(0)= P ly,.
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Let z;(t) and v; denote the jth component of x(t) and P~tu(t, Px(t))
of (3.3) as
X(t) = (.’131 (t)a $2(t)’ T 7mm(t))T

Palu(t,Px(t)) = (vla s Upy Upyly o 7vp+2q)T-

We first consider a method extracting an s-diagonal matrix like S in
(3.3) from P~ lu(t, Px(t)).

(1) For each j (1 <j < p), express v; as

v; = @;(t,x(t)) z;(t) + (;(t, x(t)),

where ¢;, (; : [0,00) x R™ — R and ¢;(¢,x(¢)) has no terms
divisible by x;(t).

(2) For each pair p+ 2k —1 and p+2k (1 < k < q), express
Uprok-1 and vpiok as

Upt2k—1 = Ppr2k—1(t, X()) Tprok—1(t) — Pprak1(t,X(t)) Tpior(t)
+ Cprar—1(t,x(t)),
Up+2k = ¢p+2k(t7x(t)) Tprok-1(t) + Pprow(t, x(t)) Tpiok(t)
+ Cptan(t, x(1)),

where @;,%;,(; ¢ [0,00) x R™ — R, and (puon_1(t,x(t))
and (p+ok(t,x(t)) have no terms divisible by z,;2x—1(t) and
Tpyok(l). _

1 Pprak-1(t,%(1) = Gpran(t,x(2)) and dpior—1(t,x(t) =
¢p+2k (t,x(t)), let

Op+k(t, X(t)) = Gpyon—1(t,%(t)) = Gpror(t, x(2)),
D (t,%(t)) = Ppron—1(t,X(8)) = bpyan(t, x(2)).

Otherwise, let o, x(¢,x(t)) = 0 and ¥x(¢,x(t)) =0 for k =
1) 2’ 4.
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Define the s-diagonal matrix S(t,x(t)) as follows:

P
S(t,x(t)) = Z w;(t,x()) I

J
B4
+y {<Pp+k (8, %(8)) Iptor—1,p+2 + Yi(t, %(t)) Sp+2k—1,P+2k}a
k=1

where ¢;, ; are obtained from (1) - (2).
If there is no ¢;(¢,x(t)) =0 (1 <i < p—+ q), and there is some k
such that

(pk(t,X(t)) > (,Di(t,X(t)) 1= 172’ L,ptg, t> 07

let o(t,x(t)) = pr(t,x(t)). Otherwise, put ¢(t,x(t)) = 0.
Finally, we define a constant s-scalar matrix W from the s-diagonal

matrices S in (3.3) and S(¢,x(t)) in (3.4) as

(35) W =wnl+ %{S ~ 5T}y %{S(tn,xn) = STt x))s

where w, = maxi<;j<ptq{A;} + ¢(tn, %) (see Example 2 in §5).
Using such a matrix W, the system (3.3) can be rewritten by

(3.6) X'(t) = Wx(t) + Ut,x(1)),  x(ta) = Xy,
where U(t,x(t)) = (S + N — W)x(t) + P~ lu(t, Px(t)).

We now propose a GS process (Runge-Kutta-GS process) which cor-
responds to a Runge-Kutta method by following steps:

(1) Apply the transformation z(t) = exp(—tW)x(t) to (3.6), then
we have

(3.7) z'(t) = exp(—tW)U(t, exp(tW)z(t)), z(ty) = zp.
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(2) Apply a Runge-Kutta method to (3.7), then we have

S
zn+1:=zn+thiki, for n=0,1,2,...,
t=1

(38) ki = exp(—tn,iW)U(tn,i7 eXP(tn,iW)Zn,i),

8
zn,i = Zy + thijkj,
i=1
where t,; = t,+c;h, s is the number of stages, d;; and b; are
constants, {c;} is monotone in [0,1], and ¢; = dim1diy (1<
,j <s).
(3) Revert (3.8) by z,,; = exp(—tn,:W)xX, i, then we have

i=1

Xn+1 = exp(hW) {xn +h Z b; exp(-—cth)Ei} ,
(3.9) ki := U(tn,i, Xn,i),

Xn,i = exp(c;hW) ¢ x,, + hz di; exp(——cth)Ej
j=1
Here exp(+c;hW) can be exactly expressed by Theorem 2.1.
(4) Find the solution of (3.1) by y,, = Px,,.
REMARK 3.1. If we apply the Euler method to (3.7) and revert
by z, = exp(—t,W)x,, then its corresponding GS process (Euler-GS
process) is derived as follows:

(3.10) Xpt1 = exp(hW){xn + hU(tn,xn)}.

REMARK 3.2. Let a linear multistep method be specified by a pos-
itive integer s and constants «;, G, 7 = 0,1....,s with a, = 1.
If we apply the linear multistep method to (3.7) and revert by z, =
exp(—t, W)X, then its corresponding GS process (linear multistep-GS
process) is derived as follows:

Z o exp(—thW)x,.; = h Z Bi exp(—ithW)U (fn44, Xnss)-

i=0 i=0
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4. Order of convergence

Let us consider the local truncation error E, = y(t,) — ¥,. Here
¥n represents the numerical solution evaluated with the exact initial
value y(t,-1).

THEOREM 4.1. If a numerical method is an rth order method, then
its corresponding GS process is also an rth order method.

Proof. If an rth order method is applied to (3.7), then its local trun-
cation error is given by

r+1
2(tni1) — Zny1 = (h+ ol z(’"+1)(t +§) for some £ € (0,h).
From the fact z(t) = exp(—tW)x(t), we obtain
= r-+1

2T (t, +€) = exp(— Z( 1) ( )WJ (r+1-9) (¢, + €).

Hence
T+t & Lt o AN S
2ltnt1) = Bnt1 = g exp(—(tn +OW) > (- 1)’( Wi (g, 4 ).
7=0

Then
Ent1 = P{X(tn41) — Xny1} = Pexp(tn i W){z(tns1) — Zni1}-

Since x("t1=9(t, + €) = P-ly(r+1=9(¢, + ¢), we have
(4.1)
r+1 r+1

Bt = oo Pexp((h=§)W D30 (r“) WIP-ly =9 (¢, 1)

for some £ € (0,h). The proof is completed. O

In particular, if the problem (3.1) is homogeneous and linear, then
(3.1) can be transformed into

(4.2) x'(t) = (S + N)x(¢t),
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and its local truncation error of an rth order GS process is obtained by
(4.1) as

r+1
(4.3) Eppy = IS P expl(h — W]
r+1
X ;)(-1) (rjl)WJ(S‘ N8 P ly (b + €)

for some & € (0, h).

COROLLARY 4.1. (1) If S is an s-scalar matrix and N = O in (4.2),
then its solution can be accurately evaluated by GS process.
(2) Its local truncation error is zero for each time step.

Proof. (1) Since W = S and U(t,x) = 0 in (3.6), we have
Xnt1 = exp(hW)x,, = {exp(hW)}"* ! x(0) = exp(tn+1W)x(0) = X(tn41),

where {exp(hW)}""! is computed by Theorem 2.1. Hence Yntl =

Y(tn+1)' _ _
(2) Since A= P71AP = § = W, it follows from (4.3) that

r+1

ot el = ORWHS — WY Py (t +6) = 0.0

En+1

COROLLARY 4.2. If S is an s-scalar matrix and the degree of nilpo-
tency of N is less than or equal to r + 1 in (4.2), then the local
truncation error of an rth order GS process is zero.

Proof. Since A = P7'!AP = § + N and SN = NS, we have
AS =S5A4. Since W = § and N™*! = O, we arrive from (4.3) at

r+1 B
Eny = mpexp((h —OWH{A-WY P ly(t, +€) =0. O
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5. Numerical examples

For the convenience of numerical computation we consider the Euler
method which is a special case of Runge-Kutta methods and linear
multistep methods.

We compare numerical results of Euler method, Lawson’s general-
ized Euler method, Euler-GS process (3.10), and Heun’s method. We
also compare the dynamics of numerical solutions obtained by the Eu-
ler method, Sanz-Serna’s recursion [5], and Euler-GS process (3.10).
Numerical computations are done by double precision using a personal
computer.

EXAMPLE 1. Consider a nonlinear initial-value problem

d (u a b u u? — v? u(0)\ [ wuo
(5-1) EE(U)—<b a) (v)+<u2—v2)’ (v(O) T \w )’
where a and b are real. The general solution of (£.1) is given by

(u(t)) _ (cl exp((a + b)t + 22 exp((a — b)t)] + czexp[(a — b)¢] )
v(t) c1expl(a+ b)t + 22 exp((a — b)t)] — czexpl(a — b)t] /)

Since the matrix P of A = (%f(t,O) = Z is given by P =

1 1 . (7 1 1 x
(1 _1>,thebystem (5.1) is transformed by (v) = (1 _1) <y>
Then we have
dfxz\ _f(a+b 0 AW dzy z(0)\ _ [ 0.5(ug + vo)
dt\y/ 0 a-b y 0 /J7\y©)/)  \0.5(ug— vo)
It follows (3.5) that the system (3.6) is given by

= () v - (),

here a]A] = b a—b)
where a][A] = max{a a—b} 166
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The following table shows the numerical results for (5.1) with h =
0.01,a = -2, b= 3, u(0) = 1.4493, and v(0) = —0.55067.

n en én €n en[Heun|

1 .95939E-03 -.47246E-04 .12051E-02 .12653E-04
100 .20182E-01 - 11771E-01 .16056E-01 .55134E-04
500 .39882E-01 -.11933E-01 .16625E-01 .11501E-03
1000 .63433E-01 -.11385E-01 .16625E-01 19771E-03
2000 .10882E+00 .93226E4-00 .16625E-01 .36308E-03
3000 .15200E+00 .10000E+01 .16625E-01 .52845E-03
4000 .19293E+00 .10000E+-01 .16625E-01 .36175E-03
5000 .99495E+00 .10000E+-01 .16625E-01 .99496E+00
6000 .10000E+01 .10000E+01 .16625E-01 .10000E+-01
10000 .10000E+01 .10000E+01 .16625E-01 .10000E+01

In the table, e,, = %ﬂ, én, €n, and e, [H eun] denote the relative
errors of the Euler method, Lawson’s generalized Euler method, Euler-
GS process (3.10), and Heun’s method at ¢ = nh, respectively. The
Padé approximation E(A4) = (I —3A/4 4+ A%?/4 - A3/24)"1(I + A/4)
of exp(A) is used in Lawson’s method.

ExAMPLE 2. Consider a complex equation

dz :
(5.2) — =(i+s— |2z, 2(0) = o,
dt
where s is a real parameter. Letting z = z + iy, the real system
corresponding to (5.2) is given by
(5.3)

a(0)=( ) 0)-G) G6)-G)
dt \y 1 s J\y y(@®+v?) )7 \y(0) v/’
Due to the rotational symmetry of (5.2), it is possible to derive a

scalar real equation for the evolution of the variable q = |z|? = 22 + 32,
namely,

d
(5.4) d—z =2(s—q)g, q(0)=qo=x¢ +y3.

Figure 1 dipicts the true dynamics of (5.4) described in Sanz-Serna
[5].
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FiGURE 1 FIGURE 2

In order to approximate the true dynamics of (5.4) by a discrete
dynamical system, we must have that

(55 {if s <0, then ¢, > ¢ny1 >0,
) if s>0, then ¢, > g1 >s or 0< gy, <gny1 <s.

Application of Euler method to (5.4) yields a discrete dynamical
system

(56)  gnt1=algn) = p(s, 1 qn)gn = {1 + 2h(s — qn) }¢n.
Its dynamics is described as follows:

For s < 0, the function « has a fixed point ¢g* = 0.
If - % <5< 0, then |o’(¢*)] < 1 and ¢* is an attracting
fixed point.
If s < —%, then |a’(¢*)] > 1 and g* is a repelling fixed point.
For s > 0, the function & has two fixed points ¢* = 0 and g™ = s.
Since |a’(g*)| > 1, ¢* is a repelling fixed point.
For the fixed point g1, there are two subcases to be considered.
For 0 <s< &, |a’(gT)| < 1. Hence gt is an attracting fixed
point.
For s > %, la’(gT)| > 1. Hence ¢t is unstable. The dynamics
in the region {(s, q)ls > —}1;,0 <g< oo} can be very comp-

licated including chaos.

Figure 2 shows that the dynamics of Euler approximation with A fixed
and s varying. The behavior of the orbit {g,} is determined by the

168



Generalized Runge-Kutta methods

value of p(3,h, q,). Here we note that

(1) If (5,q0) € {(slq)ls > 0,9 > s+
a5} then p(5,h,q0) < 0, @1 = p(5,
14 2hs — 2hg; > 1, and ¢3 = p(5,
Gn, — —00 88 N — 00.

(2) If (.§_,qo) € {(s,9)| — % <s< - 2h,() <g< 1h} then —1 <
p(§5 h’q0) <0, =g <q1 = p(gah q0)q0 <0, -1< p(§7h7 QI) <
0, and —q1 > g2 = p(3,h,q1)q1 > 0. Hence {g,} is swinging
from one side of 0 to the other and the magnitude of the swing
is shrinking. So {g.} oscilates and converges to g¢*.

(3) If {gs,q)l -5 < s <0, s+21h < g < 3} then -1 <
p(3,h,q0) < 0, —qo < @1 = p(5,h,q0)q0 < 0, 1 —2hgy > 0,
—55 <5-q <0, 0<p(5,h,q1) <1, q1 <q2=p(5,h,q)qn <
0, and 0 < p(8,h,q2) < 1. So {g,} converges to ¢* from below.

U{(s,q)|s < 0,q >

)qo < 07 p(§7ﬁaq1) -
)1 < ¢1 < 0. Hence

;"l D“'w

o)
Q0
@

Application of Euler method to (5.3) is transformed into the following
Sanz-Serna’s recursion

Gn1 = pgn) = #(3,hy4n)an = [{1 + A(s = gn)}* + h)gs

Its dynamics with h fixed and s varying is described in Sanz-Serna
[5]. In this case, the fixed points of the function y are given by

g-=0, ¢°=s—s, and ¢*=s-s,,

where s; = -1t é_h and s, = —bﬁE- Here s, s, and s, =

hf/—l—}_% - % are evaluated by h = h.

Figure 3 depicts the dynamics of Sanz-Serna’s approximation with
h fixed and s varying. The behavior of the orbit {g,} is determined by
the value of (3, h, q). Here we note that

(1) @(s,h,q) >0 for all s,h, and q.

(2) The range of the possible step size is 0 < h < hg = 0.5.

(3) ¢® has no counterpart in (5.4), i.e., ¢° is a spurious equilibrium.

(4) q* is an O(h) approximation to the equilibrium q* of (5.4).

(5) Ifh—>0 then s; —» —o00, s, — 0 and s, — 0.
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(6) If (3,q) € {(s,q)|s < s, >0 U{(s,q)|s> s, q> 5~ s},
then ¢(3,kh,q0) > 1. Hence g, < gn+1 and g, — +00 as
n — 0.

(7) In the region {(s,q)|s, < s < 54,5 =5, < g < s — st}
©(3,h,qo) is increasing to 1 as gy — s—s; or qo — s sy, and
©(5,h,qo) is decreasing to h2 < 0.25 as go — 8 + . Hence it

is difficult to estimate the behavior of the orbit {qn}

For the Euler-GS method, the s-scalar matrices for the problems
(5.3) and (5.4) are chosen by (3.5) as

WE<S~:E1 & —21 y2) and W =2(s —gn),

S— T, — Y,

respectively. Applications of Euler-GS process (3.10) to (5.3) and (5.4)
yield the discrete dynamical systems

Tn cos(h) - sin(h) Ty,
(5.7) (ynii) = exp(h(s — 2}, — y7)) (sin(h) cos(h) ) (yn ) ’
and
(5:8)  gn+1 =7(gn) = ¥(s, hy gn)gn := exp(2h(s ~ gn))gn-

The dynamics of (5.8) is described as follows

{ For s <0, the dynamics of + is the same as the true dynamics.

For s > 0, the dynamics of  is the same as the dynamics of a.

FIGURE 3 FIGURE 4

170



Generalized Runge-Kutta methods

In Figure 4, the behavior of the orbit {g,} is determined by the value
of 9(5, k, q).
For the regions
A={(s,9)|0<s< 21h, q > 5,2h(s — q) > In(s) — In(q)},

Bz{(s,q)|0<s<2h,q>s2}_1(3-—q)<1n(3)——1n(q)},
={(s,q)|0<s<2h,0<q<s}

D———{(s,q)[2 <3<,,q>s}

E:{(s,q)|—%<s<- < s, 2h(s — q) < In(s) — In(q)}, and
F = {(s,q)l—%<s<h,0<q<s,2ﬁ(s—q)>ln(s)-—ln(q)},

we note that

(1) (s, h,q) >0 for all s;h, and q.

(2) if (5,90) € A, then g, > gn+1 > § and {g,} converges to §
from above.

(3) if (5,90) € B, then (5,¢

(4) if (5,90) € C, then 2h(5—gy) < In(3) —In{gn), gn < gn+1 <5,
and {¢,} converges to § fom below.

(5) if (3,q0) € D, then 2h(5~g,) < In(5) — In(gn), (5,q1) € E or
(§’ ql) €F,

(6) if (3,q0) € E, then gp < ¢ < 5 but ¢, € F for some n.

(7) if (5,q90) € F, then (3,¢q;) € D.

g)

The dynamics in the white regions of each figures coincides with the
true dynamics.

From Figure 4 we conclude for any given § and go that
(1) if 5 <0, then for all h, or

(2) if 5> 0, then for small h such that h < min{%, 1-"2—(5._%92},
5 3—qo)

the discrete dynamical system (5.8) faithfully approximates the true
dynamics of (5.4).

The problem (5.3) is equivalent to (5.4), the discrete dynamical sys-
tem (5.7) is equivalent to (5.8), and the problem (5.4) is faithfully
approximated by the discrete dynamical system (5.8). Hence the peri-
odicity of the problem (5.3) can be faithfully represented by the discrete
dynamical system (5.7).

171



Dong Won Yu

References

(1] B.L. Ehle and J. D. Lawson, Generalized Runge-Kutta processes for stiff initial-
value problems, J. Inst. Maths. Applics. 16 (1975), 11-21.

[2] M. W. Hirsch and S. Smale, Differential equations, dynamical systems, and
linear algebra, Academic press, New York, San Francisco, London, 1974.

(3] J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large
Lipschitz constants, SIAM J. Numer. Anal. 4 (1967), 372-380.

[4] L. Perko, Differential equations and dynamical systems, Springer-Verlag, New
York, Inc., 1991.

[5] J. M. Sanz-Serna, Numerical ordinary differential equations vs. dynamical sys-
tems. In “The dynamics of numerics and the numerics of dynamics” (D.S.
Broomhead and A. Iserles, eds.), Clarendon Press, Oxford. (1992), 81-106.

DEPARTMENT OF MATHEMATICS, CHUNG-ANG UNIVERSITY, SEOUL 156-756, KOREA
E-mail: dwyu@cau.ac.kr

172



