ON THE WEYL SPECTRUM OF WEIGHT

YOUNGOH YANG

ABSTRACT. In this paper we study the Weyl spectrum of weight α , $\omega_{\alpha}(T)$, of an operator T acting on an infinite dimensional Hilbert space. Main results are as follows. Firstly, we show that the Weyl spectrum of weight α of a polynomially α -compact operator is finite, and that similarity preserves polynomial α -compactness and the α -Weyl's theorem both. Secondly, we give a sufficient condition for an operator to be the sum of an unitary and a α -compact operators.

Throughout the paper, H denotes a fixed (complex) Hilbert space of dimension $h \geq \aleph_0$, the cardinality of the set of natural numbers and we write B(H) for the set of all bounded linear operators on H. For each cardinal α with $\aleph_0 \leq \alpha \leq h$, let I_α denote the two-sided ideal in B(H) of all bounded operators of rank less than α and let \mathfrak{I}_{α} denote the uniform closure of I_{α} . Then the \mathfrak{I}_{α} are precisely the proper closed two-sided ideals of B(H). Of course, \mathfrak{I}_{\aleph_0} is the ideal of compact operators and \mathfrak{I}_h is the maximal closed two-sided ideal of B(H). If $\aleph_0 \leq \alpha < \beta \leq h$, then $\mathfrak{I}_{\alpha} \subseteq \mathfrak{I}_{\beta}$ and $\mathfrak{I}_{\alpha} \neq \mathfrak{I}_{\beta}$. For each operator T, \widehat{T} denotes the coset $T + \mathfrak{I}_{\alpha}$ in the C^* -algebra $B(H)/\mathfrak{I}_{\alpha}$. The ordinary spectrum of the canonical image \hat{T} of T in the quotient C^* -algebra $B(H)/\mathfrak{I}_{\alpha}$ is called the spectrum of T of weight α and denoted by $\sigma_{\alpha}(T)$. Hence $\sigma_{\alpha}(T)$ is nonempty and compact ([2]). $\pi_{\alpha}(T)$ is used to denote the approximate point spectrum of \widehat{T} . If T is α compact, i.e., $T \in \mathfrak{I}_{\alpha}$, then $\sigma_{\alpha}(T) = \sigma(\widehat{T}) = \{0\}$. Since \mathfrak{I}_{α} are selfadjoint ideals, $Re \ \sigma_{\alpha}(T) = \{0\} = \sigma_{\alpha}(Re \ T).$

In [6], Yadav and Arora defined the Weyl spectrum of weight α , $\omega_{\alpha}(T)$, of an operator T on H by

$$\omega_{\alpha}(T) = \cap_{K \in \mathfrak{I}_{\alpha}} \sigma(T + K).$$

Received August 18, 1997. Revised October 7, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 47A10, 47A53, 47B20.

Key words and phrases: Weyl spectrum, polynomially α -compact, irregular.

For each operator T, $\omega_{\alpha}(T)$ is a nonempty compact subset of $\sigma(T)$ [6, Theorem 1], and if T is normal then $\sigma_{\alpha}(T) = \omega_{\alpha}(T) = \pi_{\alpha}(T)$ [2, Corollary 4.7.1]. Evidently, $\sigma_{\aleph_0}(T)$ and $\omega_{\aleph_0}(T)$ are the ordinary essential and Weyl spectra of T, respectively. In particular, $0 \notin \omega_{\alpha}(T)$ if and only if T is of the form S+K, where S is invertible and $K \in \mathfrak{I}_{\alpha}$. Again it follows from the selfadjointness of the ideal \mathfrak{I}_{α} that $\overline{\omega_{\alpha}(T)} = \omega_{\alpha}(T^*)$ for any operator T.

In this paper we investigate the Weyl spectrum of weight α , $\omega_{\alpha}(T)$, of an operator T acting on an infinite dimensional Hilbert space. Main results are as follows. Firstly, we show that the Weyl spectrum of weight α of a polynomially α -compact operator is finite, and that similarity preserves polynomial α -compactness and the α -Weyl's theorem both. Secondly, we give a sufficient condition for an operator to be the sum of an unitary and a α -compact operators.

LEMMA 1. ([6]) For an arbitrary operator T and a polynomial p,

$$\omega_{\alpha}(p(T)) \subseteq p(\omega_{\alpha}(T)).$$

However, if T is normal then for any continuous function f on $\sigma(T)$,

$$\omega_{\alpha}(f(T)) = f(\omega_{\alpha}(T)).$$

An operator T is said to be polynomially α -compact if there exists a nonzero polynomial p such that p(T) is α -compact [6]. Thus T is polynomially α -compact if and only if T^* is polynomially α -compact. For a normal operator T, the followings are equivalent([6]):

- (1) T is polynomially α -compact.
- (2) There exists a continuous function f on $\sigma(T)$ such that f(T) is α -compact and f has finitely many zeros on $\omega_{\alpha}(T)$.
- (3) $\omega_{\alpha}(T)$ is finite.

From Theorem 2.4 and Theorem 4.3 in [5], we have the following structure theorem for polynomially α -compact operators.

LEMMA 2. Let $T \in B(H)$ with $p(T) \in \mathfrak{I}_{\alpha}$ for some complex polynomial p. Then there is an operator $C \in \mathfrak{I}_{\alpha}$ with p(T+C)=0.

THEOREM 3. Let $T \in B(H)$ be a polynomially α -compact operator. Then $\omega_{\alpha}(T)$ is finite.

Proof. By hypothesis there exists a nonzero polynomial p such that p(T) is α -compact. Then by Lemma 2, there is a α -compact operator $C \in \mathfrak{I}_{\alpha}$ with p(T+C)=0. Hence by the spectral mapping theorem,

$$p(\sigma(T+C)) = \sigma(p(T+C)) = \sigma(0) = \{0\},\$$

which implies that $\sigma(T+C)$ is finite and therefore so is $\omega_{\alpha}(T)$.

Theorem 4. Similarity preserves polynomial α -compactness.

Proof. Let $S,T \in B(H)$ be similar. Then there is an invertible operator $U \in B(H)$ such that $S = U^{-1}TU$. Suppose T is polynomially α -compact. Then there exists a polynomial p such that p(T) is α -compact. Since \mathfrak{I}_{α} is a two-sided ideal, $p(S) = p(U^{-1}TU) = U^{-1}p(T)U$ is α -compact. Hence $S = U^{-1}TU$ is polynomially α -compact. \square

We say ([6]) that the α -Weyl's theorem holds for T if

$$\sigma(T) - \omega_{\alpha}(T) = \pi_{0\alpha}(T)$$

where $\pi_{0\alpha}(T)$ denotes the set of all isolated eigenvalues of multiplicity less than α .

THEOREM 5. Let $T \in B(H)$ be similar to an operator S. If the α -Weyl's theorem holds for T, then it holds for S.

Proof. Let S be similar to T. Then there exists an invertible operator P such that $P^{-1}TP = S$. Note that T is the sum of an invertible and α -compact operators if and only if so is $S = P^{-1}TP$. Thus

(0.1)
$$\omega_{\alpha}(S) = \omega_{\alpha}(P^{-1}TP) = \omega_{\alpha}(T).$$

By [3, Problem 75] (0.2)

$$\sigma(S) = \sigma(P^{-1}TP) = \sigma(T)$$
 and $\sigma_p(S) = \sigma_p(P^{-1}TP) = \sigma_p(T)$.

It suffice to show that $\ker(T - \lambda) = P(\ker(S - \lambda))$ and so $\dim \ker(T - \lambda) = \dim P(\ker(S - \lambda))$. If $x \in \ker(T - \lambda)$, then

$$S(P^{-1}x) = (P^{-1}TP)(P^{-1}x) = P^{-1}T(PP^{-1}x)$$
$$= P^{-1}Tx = P^{-1}(\lambda x) = \lambda P^{-1}x.$$

Thus $P^{-1}x \in \ker(S - \lambda)$ and so $x \in P(\ker(S - \lambda))$.

Conversely if $x \in P(\ker(S-\lambda))$, then x = Py for some $y \in \ker(S-\lambda)$ and so x = Py and $P^{-1}TPy = \lambda y$. Hence $TPy = P(\lambda y) = \lambda Py$, i.e., $Tx = \lambda x$, and so $x \in \ker(T-\lambda)$. Therefore $\ker(T-\lambda) = P(\ker(S-\lambda))$ and so $\dim \ker(T-\lambda) = \dim P(\ker(S-\lambda)) = \dim \ker(S-\lambda)$ since P is invertible.

From this it is obvious that $\pi_{0\alpha}(T) = \pi_{0\alpha}(P^{-1}TP) = \pi_{0\alpha}(S)$. Since the α -Weyl's theorem holds for T, $\omega_{\alpha}(T) = \sigma(T) - \pi_{0\alpha}(T)$. From (0.1) and (0.2), $\omega_{\alpha}(S) = \omega_{\alpha}(P^{-1}TP) = \omega_{\alpha}(T) := \sigma(T) - \pi_{0\alpha}(T) = \sigma(S) - \pi_{0\alpha}(S)$. Hence the α -Weyl's theorem holds for S.

We say that T in B(H) is α -Weyl if T is of the form S+K, where S is invertible and $K \in \mathfrak{I}_{\alpha}$. In this case, if $\alpha = \aleph_0$, T is said to be Weyl.

THEOREM 6. If T in B(H) is α -Weyl and if S in B(H) is such that $\pi(S) = \pi(T)^{-1}$, then S is α -Weyl, where π is the canonical map of B(H) onto $B(H)/\mathfrak{I}_{\alpha}$.

Proof. Since T is α -Weyl, T = U + K, where U is invertible and $K \in \mathfrak{I}_{\alpha}$, and this clearly implies that S is the sum of an invertible and a α -compact operators, i.e., S is α -Weyl.

THEOREM 7. If $\pi(T)$ is hyponormal in $B(H)/\mathfrak{I}_{\alpha}$ and if $\omega_{\alpha}(T) \subseteq \{\lambda : |\lambda| = 1\}$, then T is the sum of an unitary and a α -compact operators.

Proof. By hypothesis, 0 is not in $\omega_{\alpha}(T)$ and so T = S + K, where S is invertible and K is α -compact. Hence $\pi(T) = \pi(S)$. Since $\sigma(\widehat{T}) = \sigma_{\alpha}(T) \subseteq \omega_{\alpha}(T) \subseteq \{\lambda : |\lambda| = 1\}$ and $\pi(T)$ is hyponormal, $\pi(T)$ is unitary in $B(H)/\mathfrak{I}_{\alpha}$ and so $\pi(S^*S) = \pi(I)$. But square roots of a positive element of a C^* -algebra are unique, so $\pi((S^*S)^{1/2}) = \pi(I)$.

Let the polar decomposition of S be given by $S = U(S^*S)^{1/2}$, where U is unitary. Then

$$\pi(T) = \pi(S) = \pi(U(S^*S)^{1/2}) = \pi(U)\pi((S^*S)^{1/2})$$
$$= \pi(U)\pi(I) = \pi(U),$$

so that T - U is α -compact.

For an example, consider $T=U\oplus U^*$, where U is the unilateral shift. In this case, $\omega(T)=\{\lambda: |\lambda|=1\}=\sigma_e(T)$. But T is not a normal operator. Since $I-UU^*$ and UU^*-I are rank one operators, $\pi(T)$ is normal. By Theorem 9, $T=U\oplus U^*$ is the sum of an unitary and a compact operators; in fact $\begin{pmatrix} U & I-UU^* \\ 0 & U^* \end{pmatrix}$ is unitary-it is just the bilateral shift on $l_2(\mathbb{Z})$.

We say that $S,T \in B(H)$ are α -essentially similar if there exists an invertible operator V such that $VSV^{-1} - T$ is α -compact(i.e., S is similar to a perturbation of T by α -compact operator). Call $S,T \in B(H)$ α -essentially equivalent if there exists an unitary operator U such that $USU^{-1} - T$ is α -compact

THEOREM 8. If S and T are α -essentially similar, then $\omega_{\alpha}(S)=\omega_{\alpha}(T)$.

Proof. By hypothesis, there exists an invertible operator U such that $K = USU^{-1} - T$ is α -compact. By [6, Theorem 3], $\omega_{\alpha}(USU^{-1}) = \omega_{\alpha}(T + K) = \omega_{\alpha}(T)$. Also by (0.1) $\omega_{\alpha}(USU^{-1}) = \omega_{\alpha}(S)$. Thus $\omega_{\alpha}(S) = \omega_{\alpha}(T)$.

We define a cardinal α to be α_0 -irregular if it is the sum of countably many cardinals strictly smaller than α ([2]). A cardinal which is not \aleph_0 -irregular is said to be \aleph_0 -regular.

THEOREM 9. Let H be a Hilbert space of dimension h, where h is an \aleph_0 -irregular cardinal, $h > \aleph_0$. Let S and T be normal elements of $B(H)/\Im_h$. Then the followings are equivalent:

(1) S and T are h-essentially equivalent, i.e., there exists an unitary operator U such that $USU^* - T$ is h-compact.

- (2) S and T are h-essentially similar, i.e., there exists an invertible operator P such that $PSP^{-1} T$ is h-compact.
- (3) $\sigma_h(S) = \sigma_h(T)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3): trivial (for any a and b).

 $(3) \Rightarrow (1)$: By [2, Theorem 5.7], S and T are unitarily equivalent modulo an h-compact operator, i.e., S and T are h-essentially equivalent.

THEOREM 10. Let H be a Hilbert space of dimension h, where h is an \aleph_0 -irregular cardinal, $h > \aleph_0$. If U and V are unitary operators such that $\omega_h(U) = \omega_h(V)$ is a proper subset of the unit circle, then U and V are h-essentially equivalent.

Proof. Since U and V are unitary operators, U and V are normal operators. Thus $\sigma_h(U) = \sigma(\pi(U)) = \omega_h(U) = \omega_h(V) = \sigma_h(V)$. By [2, Theorem 5.7], U and V are h-essentially equivalent, i.e., U and V are unitarily equivalent modulo an h-compact operator.

QUESTION. If the complement of $\sigma_{\alpha}(T)$ is connected does it

(0.3)
$$\omega_{\alpha}(T) = \sigma_{\alpha}(T) ?$$

If (0.3) is true one can get:

Example. If $T \in B(H)$ is a polynomially α -compact operator then

(0.4)
$$p(\omega_{\alpha}(T)) = \omega_{\alpha}(p(T))$$
 for every polynomial p .

Proof. If $T \in B(H)$ is polynomially α -compact then by Theorem 3, $\omega_{\alpha}(T)$ is finite and hence the complement of $\sigma_{\alpha}(T)$ is connected. Thus by (0.3) we have that $\sigma_{\alpha}(T) = \omega_{\alpha}(T)$. We therefore have

$$p(\omega_{\alpha}(T)) = p(\sigma_{\alpha}(T)) = p(\sigma(\widehat{T})) = \sigma(p(\widehat{T}))$$

= $\sigma(\widehat{p(T)}) = \sigma_{\alpha}(p(T)) \subseteq \omega_{\alpha}(p(T)),$

which together with Lemma 1 gives (0.4).

If $\alpha = \aleph_0$ then the answer to the question is affirmative. Therefore if the answer to the question is negative then we will get a contrast with the ordinary case.

On the Weyl spectrum of weight

ACKNOWLEDGEMENTS. I wish to express my appreciation to the referee whose remarks and suggestions lead to an improvement of the paper.

References

- [1] S. K. Berberian, The Weyl's spectrum of an operator. Indiana Univ. Math. J. 20 (1970), 529-544.
- [2] G. Edgar, J. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80.
- [3] P. R. Halmos, Hilbert space problem book, Springer-Verlag, New York, 1984.
- [4] K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.
- [5] C. L. Olsen, A structure theorem for polynomially compact operators, Amer. J. Math. 93 (1971), 686-696.
- [6] B. S. Yadav and S. C. Arora, A generalization of Weyl spectrum, Glasnik Math. 15 (1980), 315-319.

Department of Mathematics, Cheju National University, Cheju 690-756, Korea

E-mail: yangyo@cheju.cheju.ac.kr