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POSITIVE IMPLICATIVE AND ASSOCIATIVE
FILTERS OF LATTICE IMPLICATION ALGEBRAS

YounG BAE JUN*, YANG XU AND KEYUN QIN

ABSTRACT. We introduce the concepts of a positive implicative fil-
ter and an associative filter in a lattice implication algebra. We
prove that (i) every positive implicative filter is an implicative fil-
ter, and (ii) every associative filter is a filter. We provide equivalent
conditions for both a positive implicative filter and an associative
filter.

1. Introduction

In order to research the logical system whose propositional value is
given in a lattice, Y. Xu [Xu2] proposed the concept of lattice implica-
tion algebras, and discussed their some properties in [Xul] and [Xu2].
Y. Xu and K. Y. Qin [XQ)] introduced the notions of a filter and an
implicative filter in a lattice implication algebra, and investigated their
properties. Y. B. Jun [Ju] gave some equivalent conditions that a filter
is an implicative filter in a lattice implication algebra, and established
an extension property for implicative filter. In this paper, We introduce
the concepts of a positive implicative filter and an associative filter in
a lattice implication algebra. We prove that every positive implicative
filter is an implicative filter, and hence a filter, and that every associa-
tive filter is a filter. We give an example to show that a filter may not
be an associative filter. We provide equivalent conditions for both a
positive implicative filter and an associative filter.
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2. Preliminaries

DEFINITION 2.1 (Xu [Xu2]). By a lattice implication algebra we
mean a bounded lattice (L,V,A,0,1) with order-reversing involution
“17” and a binary operation “ — ” satisfying the following axioms for

all z,y,z € L:
M) z—y—2z)=y—(z—2),

(xVy) —z=(z—2)A(y— 2),

)
)
)
(153 (x—y)—y=(y—z) -2,
) (gAy) = z=(z—2)V(y— 2).

We can define a partial ordering < on a lattice implication algebra
Lbyz<yifandonlyifx »y=1.

EXAMPLE 2.2. Let L := {0,a,b,c,1}. Define the partially ordered
relation on L as 0 < a < b < ¢ < 1, and define z A y := min{z,y},
z Vy = max{z,y} for all z,y € L and “and “—” as follows:

x|z =1 0)|a|bjcil1
0] 1 0] 1 1 1 111
al c al ¢ |1 1 1 1
b | b bjib|c|1 1|1
c | a c | a ¢ 1 1
140 1010 a | b ]| cl|1

Then (L, V,A,t,—) is a lattice implication algebra.

OBSERVATION (Xu [Xu2]). In a lattice implication algebra L, the
following hold for all x,y,z € L:

() 0—-z=11—»z=zandz—1=1,

(2) x<yimpliessy — z<z—zandz—z<z—y,

@B z—=y)—(y—2)—(z—2)=1

@ z—-(z—y—-y=1
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In what follows, L would mean a lattice implication algebra unless
otherwise specified. In [XQJ, Y. Xu and K. Y. Qin defined the notions
of a filter and an implicative filter in a lattice implication algebra.

DEFINITION 2.3 (Xu and Qin [XQ)). Let (L,V,A,?,—) be a lattice
implication algebra. A subs F of L is called a filter of L if it satisfies
for all z,y € L:

(F1)1 e F,
(F2)xe Fandz - ye Fimplyy € F.

A subset F' of L is called an implicative filter of L, if it satisfies (F1)
and

(F3)z > (y—z2)eFandz—ye€ Fimplyz— z€ F
for all z,y,z € L.

LEMMA 2.4 (Jun [Ju]). Let F be a non-empty subset of L. Then F
is a filter of L if and only if it satisfies for all x,y € F and z € L:
(i) ¢ <y — =z implies z € F.

LEMMA 2.5 (Jun [Ju]). Every filter F of L has the following prop-
erty:

z<yandx e FimplyyeF.

3. Positive Implicative Filters

MAIN DEFINITION 1. A subset F' of L is called a positive implicative
filter of L if it satisfies (F1) and

(F4)z - ((y—2)—>y)e Fandz e Fimplyye F
forall z,y,z € L.

We first give an example of a positive implicative filter of a lattice
implication algebra.

EXAMPLE 3.1. Let L := {0,a,b,¢,d,1} be a set with Figure 1 as a
partial ordering. Define a unary operation “’” and a binary operation

[13 b2l

— " on L as follows (Tables 1 and 2, respectively):
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x| =1 0|la]|b|cld]|l

0} 1 01 1 1 1 1)1

a c a c 1 b c b 1

1 b | d bl dja|l1]b]lal]l

a b c a c a a 1 1 a 1

d ¢ d| b dl b |1 |10 1

0 100 Ole | b|c|d]|1l
Figure 1 Table 1 Table 2

Define V- and A-operations on L as follows:

TVy = (z—y)—y,
Ay = (' —y) -y,

for all z,y € L. Then L is a lattice implication algebra. It is easy to
check that F':= {b,¢, 1} is a positive implicative filter of L.

THEOREM 3.1. Every positive implicative filter of L is a filter.

Proof. Let F be a positive implicative filter of L, and let z —» y € F
and z € F for all z,y € L. Putting z = y in (F4), we have z — ((y —
y) —y) =z —y € Fand z € F. It follows from (F4) that y € F,
whence I is a filter of L. O

REMARK 3.2. The converse of Theorem 3.1 may not be true. In
fact, consider a lattice implication algebra L as in Example 2.2. We
know that {1} is a filter of L, but it is not a positive implicative filter,
since 1 — ((¢ — a) = ¢) =1 € {1} and ¢ ¢ {1}. Also, in Example
3.1, we know that the subset G := {a,1} is a filter, but not a positive
implicative filter of L, since 1 - ((b—c¢) —b)=1€ G forb¢ G.

Now we give an equivalent condition that every filter is a positive
implicative filter.
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THEOREM 3.3. Let F be a filter of L. Then F is a positive implica-
tive filter of L if and only if for all z,y € L,
(F5) (x —» y) » x € F impliesx € F.

Proof. Assume that F is a positive implicative filter of L and let
(r —y) — z € Fforall z,y € L. Then we have

l-((z—y) —z)=(z—y —rekl

Since 1 € F, it follows from (F4) that ¢ € F', and (F5) holds.
Conversely, suppose that F satisfies (F5). Let z — ((y — 2) — y) €
Fand z € F for all y,z € L. Then (y — 2) — y € F by (F2), which
implies y € F by (F5). Hence F is a positive implicative filter of L and
the proof is complete. 0

THEOREM 3.4. Let F be a non-empty subset of L. If F is a positive
implicative filter of L, then it is an implicative filter of L.

Proof. Let z — (y — 2) € Fandz — y € F for all z,y,2 € L.
Then

z—(y—z2)=y— (-2 [by (I1)]
<(z—y)—(z—(z—2)) by (I1) and (3)]

Since F is a filter of L (see Theorem 3.1), it follows from Lemma 2.4
that z — (z — 2) € F. On'the other hand, using (I1) and (I5) we have

((z—2)—2)—(z—2)

=z —(((z—2)—2)—2)

=z - ((z—(x—2)—(z—2)
=z— (- (z2—2) = (z—2)
=z — ((r—1) = (z—2))

=z— (1- (z— 2))

=z—(z—z)€F

By Theorem 3.3, we get £ — z € F. This completes the proof. O

OPEN PROBLEM. Does the converse of Theorem 3.4 hold?
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4. Associative Filters

MAIN DEFINITION 2. Let z be a fixed element of L. A subset F' of
L is called an associative filter of L with respect to z if it satisfies (F1)
and

(Al)z - (y—>z2)€eFandz —yec Fimplyze F
for all y,2z € L. An associative filter of L with respect to all z # 0 is
called an associative filter of L.

Clearly, an associative filter with respect to 0 is the whole algebra
L. An associative filter with respect to 1 is coincident with a filter.

EXAMPLE 4.1. Let L := {0,a,b,¢,d,1} be a set with Figure 2 as a
partial ordering. Define a unary operation “’ ” and a binary operation

[19 »

— 7 on L by Tables 3 and 4, respectively, and define V- and A-
operations on L as follows:

zVy:=(r—y)—yand zAy:= ((' - y') — y')’, respectively,

for all z,y € L.

x|z |1 0]lajb|c|d|1

0] 1 0111 1111

a d a d 1 a c c 1

1 b | c blel1]|1]c|ell

a c c b c| b | a | b 1 a1l

d dl a d|la|1!la]|l 1

0 110 140]la|bicld]|1l
Figure 2 Table 3 Table 4

Then L is a lattice implication algebra. It is routine to verify that
F :={1,a,b} is an associative filter of L with respect to a and b, but
not with respect to ¢ and d, since

co(b—d=c—c=1€F,c—>b=bcFbutd¢F,
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and
d—-(b-oc)=d—c=1€F,d->b=acFbutc¢F.

PROPOSITION 4.1. Every associative filter with respect to x contains
z itself.

Proof. If x = 0,1 then it is trivial. Assume z # 0. Let F be an
associative filter of L with respect to . Note that z — (1 — z) =z —
z=1l€Fandz —1=1¢ F. It follows from (Al) that z € F. O

THEOREM 4.1. Every associative filter is a filter.

Proof. Let F be an associative filter of L and let £ — y € F and
zeFforallz,ye L. Thenl nz=z€Fandl—- (z—y)=x—
y € F. It follows from (Al) that y € F'. Hence F is a filter of L O

REMARK 4.2. The converse of Theorem 4.1 may not be true. In
fact, we know that, in Example 2.2, {1} is a filter of L. But it is not
an associative filter of L, sincea — (b - ¢) =a — 1 =1 € {1} and
a—b=1¢€ {1}, but c ¢ {1}.

Now we give equivalent conditions that every filter is an associative
filter.

THEOREM 4.3. Let F be a filter of L. Then F' is an associative filter
if and only if it satisfies

(A2) 2 — (y — 2) € F implies (x > y) »z€ F
for all z,y,z € L.

Proof. If a filter F' of L satisfies the condition (A2), then clearly F
is associative. Conversely, let F' be an associative filter of L and let
z— (y— 2) € Fforall z,y,z € L. Then

z—((y—2)—(z—y)—2)

=@y—2)—-@—-(z—-y —2) [by (I1)]
=y—2) = ((z—y —(z—2) [by (I1)]
=1¢€F, [by (I1) and (3)]
which implies from (A1) that (z — y) — z € F. This completes the
proof. 0
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THEOREM 4.4. Let F' be a filter of L. Then F is an associative filter
if and only if it satisfies

(A3) z — (z — y) € F impliesy € F
for all z,y € L.

Proof. Let F be a filter of L. It is sufficient to show that (A2) and
(A3) are equivalent. Putting z = y in (A2) and using (I2) and (1), we
obtain (A3). Assume that (A3) holds and let z — (y — z) € F for all
z,y,z € L. Using (I1), (12), (1), (2) and (3), we have

(z—=(y—2) - (@—(z—((z-y —2))
=l=(z=(y—=2) = (z— (- ((z—y) —2)
=ly—2 ==z -y) —2) =z (y—2)
—(@—=(z—=(z—y) —2)
=@—=W—2)-(y—2) - (- ((z—-y) —2)
= (2= (z— (z ~y) — 2))))
2(@—(y—2)—(@—@y—2)=1,

which implies that
z—=(y—2)—=(c-(z—-((z—y)—2)=1€eF
Since £ — (y — 2) € F' and since F' is a filter, it follows that
T—(z—((z—y) —2) €l

By using (A3), we conclude that (x — y) — z € F. This completes the
proof. )
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