Abstract
Hypericin, a photosensitizing plant pigment, was found to be a potent inducer of differentiation of human myeloid leukemia U-937 cells. At a concentration of $0.2{\mu}M$, hypericin exhibited 50% growth inhibition. An effect on cell differentiation by hypericin was assessed by its ability to induce phagocytosis of latex particles, and to reduce nitroblue tetrazolium (NBT). Approximately 51% of $0.2{\mu}M$ hypericin-treated cells were stained with NBT and 63% showed phagocytic activity. In order to establish whether hypericin induces differentiation of U-937 cells to macrophage or granulocyte, esterase activities and cell sizes were measured. When U-937 cells were treated with $0.2{\mu}M$ and $0.15{\mu}M$ of hypericin, the .alpha.-naphthyl acetate esterase activity was increased by 38.4% and 48.1%, respectively, but naphthol AS-D chloroacetate esterase activity was not influenced. The size of hypericin-treated cells in terms of cell mass was larger than that observed in untreated cells as determined by flow cytometry. Protein kinase C (PKC) inhibitor, NA-382, decreased the NBT reducing activity of hypericin, whereas a cAMP-dependent protein kinase A (PKA) inhibitor, H-89, did not show any influence on the differentiations. These results indicate that hypericin triggers differentiation toward monocyte/macrophage lineage by PKC stimulation.