
East Asian Math J. 14 (1998), No. 1, pp. 141-148

CAUCHY-SEQUENTIAL CONVERGENCE SPACES

Woo Chorl Hong

1. Introduction

It is well-known that every topological space can be specified com

pletely by their convergent filters, but may not be done by their con

vergent sequences. Many topologists have characterized the 이ass of 

topological spaces which can be determined by the knowledge of their 

convergent sequences([7]-[10]). A more penetrating solution was given 

by A. V. Arhangel,skii who called the spaces satisfying the following 

propertyfthisTproperty is called the Frechet-TJrysohn 卩厂。/疋厂([쉬 and 

[11])) Frechet spaces([l]-[3]): The closure of any subset A of a topo

logical space X is the set of all limits of sequences in A. Indeed, every 

first-countable spare and so every metric space is Frechet. Several 

authors introduced other generalizations of first-countable spaces and 

studied some properties of these spaces and their related topics([2]-[6], 

[11] and [12]). Recently, the author in [6] introduced sequential con

vergence structures and sequential convergence spaces and showed that 

Frechet spaces are determined by these structures.

In this paper, we introduce the concept of Cauchy structures on 

a sequential convergence space and obtain a completion of a class of 

Cauchy-sequential convergence spaces.

2. Cauchy-sequential convergence spaces

In this section, we reintroduce sequential convergence structures and
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some properties of these structures which were announced in [6]. And 

we introduce the concepts of Cauchy-sequential convergence spaces, 

continuity in sequential convergence spaces and Cauchy-continuity in 

Cauchy-sequential convergence spaces. We give some examples.

Let X be a nonempty set and S(X) the set of all sequences in X. 

Let N denote the set of all natural numbers. A nonempty subfamily L 

of the cartesian product S(X) x X is called a sequential convergence 

structure on X[6] if it satisfies the following properties:

(SCI) For each x E X, ((x), x) G L, where (x) is the constant sequence 

whose A:-th term is x for all indices k E N.

(SC2) If (a, x) G L, then (/?, x) E L for each subsequence 0 of a.

(SC3) Let x E X and A C X. If (a, x) L for each a C SJ4), 
then (0, x) L for each /3 € S({y E X|(7, y) E L for some 7 6 

S(4)}).

If a sequential convergence structure £ on X is given, then the pair 

(X〉L) is called a sequential convergence spaced. Hereafter, we i^e-the 

notation SC[X] for the set of all sequential convergence structures on 

X.

Let (X,7) be a Frechet space (we call T a Frechet topology on X) 

and let Lr denote the set of all pairs (a,x) e S(X) x X such that 

the sequence a converges to x in the space (X, 丁). Then, it is easy 

to check that L丁 G SC[X]y and two topological spaces (X, T) and 

(X, Lt) are the very same since (X, T) is a Frechet space. Hence we 

have that every Frechet space is a sequential convergence space. And, 

for each L E S이X], define a function Cl of the power set P(X) of X 

into itself as follows: Q乙。4) = {x E X\(a,x) € L for some a 6 S(A)} 

for all A € P(X). Then, Cl is a topological(or Kuratowski) closure 

operator on X and (X, Cl) is a Frechet space. Let £(<7乙)denote the 

set of all pairs (a,x) € S(X) x X such that a converges to x in the 

space (X,CZ). By the following example, we see that L 括 £((?£), 
in general. Consequently, we have that every sequential convergence 

space (X, L) need not be a Frechet space even if (X, L) determine a 

Frechet space (X, Cl) as above.

Example 2.1[6]. In general, L 寸二 £(Cl). Let Q be 난禮 set of all ra

tional numbers with the usual topology and let Lq = ((a, x) C S(Q) x 

Q\a converges to x in Q} and L = (((x), x)\x e Q} U {(a, x) G S(Q) x 

Q\a converges to x in (J and a is either strictly increasing or strictly 
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decreasing}. Then L, Lq E SC[Q] and L 울 Lq = £(Clq) = £((%，)•

Theorem 2.2[6]. There exists a one-to-one correspondence T 卜스 
Clt between the set of all Frechet topologies on a set X and {Cl\L € 

SC[X]}.

Throughout this paper, we assume that all given L G SC[X] satisfies 

the following property: If (%对 G L and (a,y) G L, then x = y . Note 

that the property above is called unique sequential limits. It is well- 

known that ^ausdorffness1 implies 'unique sequential limits5, but the 

converse is not true(See [이).
Let a E S(X). For each k E Ny the fc-th term of a is denoted by 

a(k). For each ay/3 E S(X\ we will use the notation 点 /、。for the 

sequence such that ot/\/3(2k — 1) = a(fc) and a A/?(2fc) = (3{k) for each 

k E N. Our notation a A /? is quoted from [7].

De珂西TFIC应 2.3. L*et L-G SC[X]. A nonempty subcollection C of 

S(X) is called a Cauchy structure on the sequential convergence space 

(X] L) if it satisfies the following properties.

(Cl) For each (a, x、) £ Lq C C.

(C2) If a e C, then (3 E C ior each subsequence (3 of a.

(C3) If a, G C with common subsequence, then a A /? € (7.

(C4) If a A (x) G C)then (a, x) € L.

If a Cauchy structure C on a sequential convergence space (X, L) is 

given, then the triple (X, L, C) is called a Cauchy-sequential conver

gence space.

Example 2.4. In Example 2.1, let C = {(rc)|x e Q} U {a C S(Q)|q 

is Cauchy in Q in the usual sense and a is either strictly increasing or 

strictly decreasing} and let Cq be the set of all Cauchy sequences in Q. 

Then, (Q,L, C) and (Q,Lq,Cq) are Cauchy-sequential convergence 

spaces.

By the usual ways, we can. define the completeness of a Cauchy- 

sequential convergence space as follows:

Definition 2.5. A Cauchy-sequential convergence space (X, C) 

is complete if and only if for each a G (7, there exists x E X such that 

(oj,x) € L.
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Let R be the set of all real numbers with the usual topology and 

let Lr = ((a,x) G S(R) x R\a converges to x in R} and Cr = {a E 

S(R)\a is Cauchy in R }. Then it is obvious that (R, Lr> Cr) is a com

plete Cauchy-sequential convergence space, but (Q, L, C) and (Q,Lq, 

Cq) are not complete.

Theorem 2.6. Let (X, L, C) be a complete Cauchy-sequential con

vergence space and Y a nonempty subset of X. Then (Cl(Y)^L D 

(S(Cl(Y)) x Cl(Y)),C Q S(Cl(Y))) is a complete Cauchy-sequential 

convergence space.

Proof. It is straightforward.

We next introduce the concepts of continuity and Cauchy-continuity.

Definition 2.7. (1) A function f : (X, Lx) t (Y} Ly) of a sequen

tial convergence space (X, Lx) into a sequential convergence space (匕 
Ly) is called continuous if for each (af,x) € Lx, (f(&), 了(工))£ Ly 

where /(a) denotes the image sequence of a tinder /.

(2) A function / of a Cauchy-sequential convergence space (X0x, 

Cx) into a Cauchy-sequential convergence space (Y^Ly^Cy) is called 

Cauchy-continuous if for each a E (7%, f(a) E Cy.

The family of all real-valued continuous(Cauchy-continuous) func

tions defined on a sequential convergence space (X, L)(a Cauchy-sequ

ential convergence space (X, L, (7)) is denoted by C(X, L)(resp. C(X, L, 

C)). That is, C(X, L) = (/|/ : (X0) t (R»Lr) is continuous} and 

C(X, L, C) = {f\f : (X,L,C) -숭 (R’Lr’Cr) is Cauchy-continuous}.

Remark. (1) It is w이 1-known that C(Q, Zq) = C(Q, Lq, Cq).

(2) It is easy to show that if a Cauchy-sequential convergence space 

(X, L, C) is complete, 나len C(X, L) c C(X, L, C). But, we have no 

any guarantee that if /(a) G Cr for each (a, x) G L> then /(rr) = z 

where z is the limit of /(a) in R)i.e., E Lr. Thus we have
that in general, C(X, L)决 C(X} L, C) even if (X丄 C) is complete.
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3. A completion of Cauchy-sequential convergence spaces

In this section, we investigate the completeness of real-valued func

tion spaces defined on a Cauchy-sequential convergence space and ob

tain a completion of a class of Cauchy-sequential convergence spaces 

based on. a real-valued function space.

Let X be a nonempty set and L C S(X) x X(need not be L € 

SCfX]). From now on, we need the following property:

(★) Let (a,x) G L and let ((xnm),a(7i)) € L for each n E N.

It is possible to choose a cross-sequence (^nrn(n)) 而 the double 

sequence (xnrn) such that (3nm(n))点)£ L and m(n)化 n 

for all n E N.

Note that (★) implies (SC3), but the converse is not true, in general. 

In Example 2.1, L e S이Q] and so L satisfies (SC3). It is easy to check 

that this L doesoiot satisfy (★).

Let (X,L»C) be a Cauchy-sequential convergence space and let us 

adopt 나le following notations: C* = ((/n) e S(C(X, L, C))| for each 

a € C, the double limit /n(a(fc)) exists} and L* = (((/n)5 /)| 
(/n) e C* and (/n) A (/) e & for some f e C(X, L, C)}

Theorem 3.1. Let C) be a Cauchy-sequential convergence 

space. IfL* satisfies (★), then (C(X, L, <7), £*, (7*) is a complete Cauchy 

sequential convergence space.

Proof. Since L* satisfies (★), it is obvious that L* G S이C(X, L, C)]. 

We next prove that C* is a Cau사ly structure on (C(X0,C)D 

Clearly, C* satisfies (Cl) and (C2). It remains to prove that C노 satis

fies (C3) and (C4).

(C3) Let (/n),(5n) € C* with common subsequence. Assume that 

/s(n)= 9t(n), for all n G TV, where s and t denote strictly increasing 

functions of N into itself. Then for each a G C, fn(a(fc))= 

lining/s(n)(a(fc)) = limnj"左(n)(°G)) = lim臨:如(°侬))，let ra denote 

the limit. For each e > 0, there exist € N such that |/n(Q(fc)) 一 
ra\ < € for each n, k nj and |^n(a(fc)) — ra| < e for each n, fc 

Put no = max(ni, n2). It follows that |(/n) A (^n)(m)(a(fc)) 一 丁시 < € 
for each m, fc 2n(). Hence (/n) A (如)e C*.
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(C4) If (fn)A(f) € C*, then by definition of C* we havelimmjA：(/n)A 

(/)(m)(Q(人;))=/n(a(fc)) = lim人:/(a(fc)) for each a € C, and the 

limit exists. Hence (/n) G C* by definition of (7*, and so ((/n), /) G L* 

by definition of L*.

Therefore, (C(X, L,C), £*, C*) is a Cauchy-sequential convergence 

space.

Finally, we show that the space (C(X, L, (7),L*,C*) is complete. Let 

(/n) € C*. Define a real-valued function / on X by /(x) = limn /n(x) 

for all 仁 C X. Since (x) G C, it is obvious that limn /n(^) exists for 

each x E X and hence f is well-defined and / e C(X, L,C). We now 
이 aim that ((/n),/) € L*. Let a EC. Since 房) G C*, limn)fc/n(^(fc)) 

exists, and hence we have limnjfc/n(<^(fc)) = linifc(limn /n(a(fc)))= 

limn(limA； /n(«(A:))). It follows that by definition of /, limn)A； /n(<^(fc))= 

limfc(limn fn(a(k))) = lim*； f(a(k)) and thus ((/n),/) € L*.

The proof completes.

Remark. Let (7(乙*) denote 아le set of all sequences 77 e S(X) such 

that for each ((A), /) G L*, lining /fc(^7(^)) exists. Then it is easy 

to check that C C C(L*)> but lining ffc(^(n)) need not be equal to 

limnf(7/(n)), i.e., C + C(L*).

Let C(C(X, L, C\ denote the set of all real-valued Cauchy- 

continuous functions defined on (C(X, L, C\ L*, C*) and let us adopt 

the following two notations: C** = {(如)€ S(C(C(X, L?C),L*,C*))| 
limnik^)n(fk) exists for each (fk) e C*} and £** = {(爲J,由)|(©n) e 

C** and g A (0) € C** fo호 some(/> e Note

that since (C(X, L, C), L*, C*) is complete by Theorem 3.1, we have 

that for each (/fc) € C\ ((/fc),/) e L* for some f e C(X,4C). Thus, 

b* = {(M) G S(C(C(X, £, C)} L*, C*))| limn)fc ^n(/fc) = limn ^>n(f) 

and the limit exists, for each ((/a：),/) € £*}.

The following theorem may be proved in much the same way as 

Theorem 3.1 and hence we omit the proof.

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 are 

fulfilled and L** satisfies (★). Then (C(C(X,L,C),L*,C*), L*% C**) 

is a complete Cauchy-sequential convergence space.

We require a definition. A function / of a Cauchy-sequential conver- 

gence space (X,Lx, Cx) into a Cauchy-sequential convergence space 
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(匕 Ly, Cy) is called a Cauchy-embedding if f is injective and f and 

厂' are both Cauchy-continuous.

Theorem 3.3. Assume that the hypotheses of Theorems 3.1-3.2 

are fulfilled and C(X, L、C) separates points of X. Define a function 

i : (X0,C) - (C(C(X,L,C),L*,C*),顷 C心)by i(x)(f) = f(x) 

for each x e X and / 6 C(X, L, C)・ Then i is a Cauchy-embedding if 

and only if C — C(L*).

Proof. Injectiveness of i: Let x and y be any distinct points of 

X. Then, by the assumption; C(X,Z, C) separates points, there exists 

f € C(X, L, C) such that /(t) + /(?/). It follows that f(x)(/) = /(x)尹 
f(y) = ^(1/)(/) and hence i(x) + i(y).

Cauchy-continuity of i\ Let a E C and ((/k), f) € L*. Then, by 

definitions of L* and C*, it is clear that (fQ € C* and limn* jX(a(n)) 

exists. Since ((A),/) € L*, we have lining(a(n)) = limn/(a(n)). 

It follows that hmnjfc z(a侦))(力虹) =比호虹人; 扌火欢无)) = 血竖 f(^(n)) and 

the limit exists. By Theorem 3.1, (C(X, L, (?),£*, (7*) is complete and 

thus z(q) € C**.

Cauchy-continuity of 厂Let (偽) € C** with 나le range of (《&) 
is contained in z(X) and let ((/fc), f) € L*. Then, by definition of 

C**, lining <^n(A) = limn 0n(/) and the limit exists. In fact, since 

(C(C(X, L?C), L*, C*), L**, C**) is complete by Theorem 3.2, (0n), 

0) G L** for some © £ C(C(X0, C),矿顷)and lim展“(/) = 0(/). 

Since 1血必亦：(广*如)=limnjfci(i-1(^>n))(/fc) = we
have (/T(*n)) € C(L*) by definition of C(L*) and hence, by hypoth- 

esis;C = C(£*), (iS)eC.

Therefore, z is a Cauchy-embedding.

Conversely, assume that z is a Cauchy-embedding and let 77 € C(L) 

By definition of C(L*), for each € £*, lining A(77(^))=

limn f(r](n)) and the limit exists. Since lining 加이(h)) = limn)A； i(7?(n)) 

(A), we have 1(77) e C** by definition of C**. By injectiveness and 

Cauchy-continuity of if we have 7] E C, Therefore, C(L*) C C. As 

C C C(L*) is always true, it follows that C = C(、L*)

The proof completes.

Let (X〉Lx、Cx) be a non-complete Cauchy-sequential convergence 

space. A complete Cauchy-sequential convergence space (Y, Ly,Cy) is 
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called a completion of (X, L%, Cx) if there exists a Cauchy-embedding 

f : (X,乙x,Cx) -승 (Y.Ly^Cy) such that CLr(/(X)) = Y. This 

involves no loss of generality.

According to Theorem 2.6 and Theorems 3.1-3.3, we consequently 

obtain the following result.

Theorem 3.4. Let (X, L, C) be a non-complete Cauchy-sequential 

convergence space. Assume that the hypotheses of Theorems 3.1-3.3 

are fuelled andC = C(L*). Then, L**n(S(CL^(i(X)))

C** C S(C"**(£(X)))) is a smpletio口 of (X, L,C).
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