CERTAIN CLASS OF FRACTIONAL CALCULUS OPERATOR WITH TWO FIXED POINTS

Oh Sang Kwon

Abstract

This paper deals with functions of the form $f(z)=$ $a_{1} z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{1}>0, a_{n} \geqslant 0\right)$ with $(1-\mu) f\left(z_{0}\right) / z_{0}+\mu f^{\prime}\left(z_{0}\right)=1$ $\left(-1<z_{0}<1\right)$ We introduce the class $\varphi\left(\mu, \eta, \gamma, \delta, A, B, z_{0}\right)$ with generalized fractional derivatives. Also we have obtained coefficient inequalities, distortion theorem and radious problem of functions belonging to the calss $\varphi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geqslant 0\right) \tag{1.1}
\end{equation*}
$$

which are univalent in unit disk $D=\{z:|z|<1\}$. Recently, Uralegaddi and Somanatha [4] studied the class of functions of the form

$$
\begin{equation*}
f(z)=a_{1} z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{1}>0, a_{n} \geqslant 0\right) \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{(1-\mu) f\left(z_{0}\right)}{z_{0}}+\mu f^{\prime}\left(z_{0}\right)=1 \tag{1.3}
\end{equation*}
$$

where

$$
-1<z_{0}<1, \quad 0 \leq \mu \leq 1 .
$$

Recesved January 20, 1998. Revised May 11, 1998.
1991 Mathematics Subject Classification 30C45.
Key words and phrases: subordinate and generalized fractional derivative

A function $f(z)$ is said to be convex of order α, if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f(z)}\right\}>\alpha \quad(z \in D: 0 \leq \alpha<1) \tag{1.4}
\end{equation*}
$$

We denote by $C^{*}(\alpha)$ the class of convex functions of order $\alpha(0 \leq \alpha<$ 1).

Let $f(z)$ be analytic function and $g(z)$ be multivalent function satisfying $f(0)=g(0)$ and $f(D) \subset g(D)$, then $f(z)$ is said to be subordinate to $g(z)$, and is denoted by $f(z) \prec g(z)$.

We now recall the following definition of a generalized fractional operator introduced by Srivastava et al [3].

Definition 1. For real numbers $\eta(\eta>0), \gamma$, and δ, the generalized fractional integral operator $I_{0, z}^{\eta, \gamma, \delta}$ of order η is defined, for a function $f(z)$, by

$$
\begin{align*}
& I_{0, z}^{\eta, \gamma, \delta} f(z) \\
= & \frac{z^{-\eta-\gamma}}{\Gamma(\eta)} \int_{0}^{z}(z-\xi)^{\eta-1} F\left(\eta+\gamma,-\delta ; \eta ; 1-\frac{\xi}{z}\right) f(\xi) d \xi, \tag{1.5}
\end{align*}
$$

where $f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin with the order

$$
f(z)=O\left(|z|^{\varepsilon}\right),(z \longrightarrow 0),(\varepsilon>\max \{0, \gamma-\delta\}-1)
$$

$$
\begin{equation*}
F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} \quad(z \in D), \tag{1.6}
\end{equation*}
$$

and ($\nu)_{n}$ being the pochhammer symbol defined by

$$
(\nu)_{n}=\frac{\Gamma(\nu+n)}{\Gamma(\nu)}=\left\{\begin{array}{cl}
1, & (n=0) \\
\nu(\nu+1) \cdots(\nu+n-1) & (n \in N=\{1,2, \cdots\})
\end{array}\right.
$$

provided further that the multiplicity of $(z-\xi)^{\eta-1}$ is removed by requiring $\log (z-\xi)$ to be real when $(z-\xi)>0$.

Definition 2. For real numbers $\eta(0 \leq \eta<1), \gamma$, and δ, the generalized fractional derivative operator $J_{0, z}^{\eta, \gamma, \delta}$ of order η is defined, for a function $f(z)$, by

$$
\begin{align*}
& J_{0, z}^{\eta, \gamma, \delta} f(z) \tag{1.7}\\
= & \frac{1}{\Gamma(1-\eta)} \frac{d}{d z} \\
& \quad\left\{z^{\eta-\gamma} \int_{0}^{z}(z-\xi)^{-\eta} F\left(\gamma-\eta,-\delta ; 1-\eta ; 1-\frac{\xi}{z}\right) f(\xi) d \xi\right\},
\end{align*}
$$

where $f(z)$ is an analytic function in a simply-connected region of the z plane containing the origin, and the myltiplicity of $(z-\xi)^{-\eta}$ is removed as Definition 1 above.

Lemma 1 [3]. If $0 \leq \eta<1$ and $k>\gamma-\delta-2$, then

$$
\begin{equation*}
J_{0, z}^{\eta, \gamma, \delta} z^{k}=\frac{\Gamma(k+1) \Gamma(k-\gamma+\delta+2)}{\Gamma(k-\gamma+1) \Gamma(k-\eta+\delta+2)} z^{k-\gamma} . \tag{1.8}
\end{equation*}
$$

We will define the following definition.

Definition 3. A function $f(z)$ defined by (1.2) and satisfying (1.3) is said to be in the class $\varphi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$ if

$$
\frac{\Gamma(2-\gamma) \Gamma(3-\eta+\delta)}{\Gamma(3-\gamma+\delta)} z^{\gamma-1} J_{0, z}^{\eta, \gamma, \delta} f(z) \prec a_{1} \frac{1+A z}{1+B z}
$$

where $0 \leq \eta<1, \gamma<2, \eta-\delta<3, \gamma-\delta<3,-1 \leq B<A \leq 1$ and $-1 \leq B \leq 0$.

For $\eta=\gamma, \varphi\left(\mu, \eta, \eta, \delta, A, B ; z_{0}\right)$ has been studied by S. R. Kulkarni and U. H. Naik [1]. The main purpose of this paper is to investigate coefficient inequalities, distortion theorem and radious problem of functions belonging to the calss $\varphi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$

2. Coefficient inequalities

Theorem 1. A function $f(z)$ belongs to $\varphi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$ if, and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\frac{(1-B)}{(A-B)} \phi(\eta, \gamma, \delta, n)-[(1-\mu)+n \mu] z_{0}^{n-1}\right\} a_{n} \leq 1, \tag{2.1}
\end{equation*}
$$

where

$$
\phi(\eta, \gamma, \delta, n)=\frac{(3-\gamma+\delta)_{n-1} n!}{(2-\gamma)_{n-1}(3-\eta+\delta)_{n-1}}
$$

and $(v)_{n}$ is Pochhammer symbol.
Proof. Suppose $f(z)$ belongs to $\varphi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$. Then we have

$$
\begin{equation*}
F(z)=a_{1} \frac{1+A w(z)}{1+B w(z)} \quad(-1 \leq B<A \leq 1) \tag{2.2}
\end{equation*}
$$

where $w(z)$ is analytic in D with $w(0)=0,|w(z)|<1$ and

$$
\begin{aligned}
F(z) & =\frac{\Gamma(2-\gamma) \Gamma(3-\eta+\delta)}{\Gamma(3-\gamma+\delta)} z^{\gamma-1} J_{0, z}^{\eta, \gamma, \delta} f(z) \\
& \approx a_{1}-\sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n) a_{n} z^{n-1},
\end{aligned}
$$

and

$$
\phi(\eta, \gamma, \delta, n)=\frac{(3-\gamma+\delta)_{n-1} n!}{(2-\gamma)_{n-1}(3-\eta+\delta)_{n-1}} .
$$

Equation (2.2) is equivalent to

$$
\begin{equation*}
\left|\frac{F(z)-a_{1}}{B F(z)-a_{1} A}\right|=|w(z)|<1 . \tag{2.3}
\end{equation*}
$$

Since $|\operatorname{Re} z| \leq|z|$ for any z, we have from (2.3)

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n) a_{n} z^{n-1}}{(A-B) a_{1}+\sum_{n=2}^{\infty} B \phi(\eta, \gamma, \delta, n) a_{n} z^{n-1}}\right\}<1 . \tag{2.4}
\end{equation*}
$$

Choose values of z on the real axis so that $F(z)$ is real, upon cleaning the denominator in (2.4) and letting $z \rightarrow 1$ through the real values, we get

$$
\begin{equation*}
\sum_{n=2}^{\infty}(1-B) \phi(\eta, \gamma, \delta, n) a_{n} \leq a_{1}(A-B) \tag{2.5}
\end{equation*}
$$

Finally substiuting $a_{1}=1+\sum_{n=2}^{\infty}[(1-\mu)+n \mu\} a_{n} z_{0}^{n-1}$ in (2.5), we get (2.1).

Conversely, suppose that (2.1) holds. Consider

$$
\begin{aligned}
& \left|F(z)-a_{1}\right|-\left|B F(z)-a_{1} A\right| \\
= & \left|\sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n) a_{n} z^{n-1}\right|-\left|(A-B) a_{1}+\sum_{n=2}^{\infty} B \phi(\eta, \gamma, \delta, n) a_{n} z^{n-1}\right| \\
\leq & \sum_{n=2}^{\infty}(1-B) \phi(\eta, \gamma, \delta, n) a_{n}-a_{1}(A-B) \\
\leq & 0, \quad \text { by hypothesis. }
\end{aligned}
$$

Hence, by maximum modulus theorem, we get

$$
\left|\frac{F(z)-a_{1}}{B F(z)-a_{1} A}\right|<1 \quad(z \in D)
$$

which implies that there exist an analytic function $w(z)$ such that $w(0)=0$ and $|w(z)|<1$ and that

$$
\frac{F(z)-a_{1}}{B F(z)-a_{1} A}=w(z)
$$

which in turn implies that $f(z)$ belongs to $\varphi\left(\mu, \eta, \gamma, A, B ; z_{0}\right)$.

3. A distortion theorem

THEOREM 2. If a function $f(z)$ is in the class $\varphi\left(\mu, \eta, \gamma, A, B ; z_{0}\right)$ with $3 \eta \geq \gamma(\eta-\delta-1)$, then

$$
\begin{align*}
& a_{1}\left(|z|-\frac{(A-B)(2-\gamma)(3-\eta+\delta)}{2(3-\gamma+\delta)(1-B)}|z|^{2}\right) \leq|f(z)| \tag{3.1}\\
\leq & a_{1}\left(|z|+\frac{(A-B)(2-\gamma)(3-\eta+\delta)}{2(3-\gamma+\delta)(1-B)}|z|^{2}\right) \quad(z \in D) .
\end{align*}
$$

Proof. In view of equation (2.5) and the fact that $\phi(\eta, \gamma, \delta, n)$ is non-decreasing for $n \geq 2$, we have

$$
\begin{align*}
& \frac{2(3-\gamma+\delta)(1-B)}{(2-\gamma)(3-\eta+\delta)} \sum_{n=2}^{\infty} a_{n} \tag{3.2}\\
\leq & \sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n)(1-B) a_{n} \leq a_{1}(A-B),
\end{align*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{a_{1}(A-B)(2-\gamma)(3-\eta+\delta)}{2(3-\gamma+\delta)(1-B)} . \tag{3.3}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{align*}
& |f(z)| \geq a_{1}|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n} \tag{3.4}\\
\geq & a_{1}\left(|z|-\frac{(A-B)(2-\gamma)(3-\eta+\delta)}{2(3-\gamma+\delta)(1-B)}|z|^{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
& |f(z)| \leq a_{1}|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n} \tag{3.5}\\
\leq & a_{1}\left(|z|+\frac{(A-B)(2-\gamma)(3-\eta+\delta)}{2(3-\gamma+\delta)(1-B)}|z|^{2}\right) .
\end{align*}
$$

Theorem 3. If a function $f(z)$ is in the class $\phi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$, then
(3.6) $\left|J_{0, z}^{\eta, \gamma, \delta} f(z)\right| \geq \frac{a_{1} \Gamma(3-\gamma+\delta)}{\Gamma(2-\gamma) \Gamma(3-\eta+\delta)}\left(|z|^{1-\gamma}-\frac{A-B}{1-B}|z|^{2-\gamma}\right)$
and

$$
\begin{equation*}
\left|J_{0, z}^{\eta, \gamma, \delta} f(z)\right| \leq \frac{a_{1} \Gamma(3-\gamma+\delta)}{\Gamma(2-\gamma) \Gamma(3-\eta+\delta)}\left(|z|^{1-\gamma}+\frac{A-B}{1-B}|z|^{2-\gamma}\right) \tag{3.7}
\end{equation*}
$$

for $z \in D_{0}$, where

$$
D_{0}= \begin{cases}D, & \gamma \leq 1 \\ D-\{0\}, & 1<\gamma<2 .\end{cases}
$$

Proof. By using second inequality in (3.1), we observe that

$$
\begin{align*}
& \left|\frac{\Gamma(2-\gamma) \Gamma(3-\eta+\delta)}{\Gamma(3-\gamma+\delta)} z^{\gamma} J_{0, z}^{\eta, \gamma, \delta} f(z)\right| \\
\geq & a_{1}|z|-\sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n) a_{n}|z|^{n} \\
\geq & a_{1}|z|-|z|^{2}\left(\sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n) a_{n}\right) \tag{3.8}\\
\geq & a_{1}\left(|z|-\frac{A-B}{1-B}|z|^{2}\right),
\end{align*}
$$

which is equivalent to (3.6).
Next

$$
\begin{aligned}
& \left|\frac{\Gamma(2-\gamma) \Gamma(3-\eta+\delta)}{\Gamma(3-\gamma+\delta)} z^{\gamma} J_{0, z}^{\eta, \gamma, \delta} f(z)\right| \\
\leq & a_{1}|z|+\sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n) a_{n}|z|^{n} \\
\leq & a_{1}|z|+|z|^{2}\left(\sum_{n=2}^{\infty} \phi(\eta, \gamma, \delta, n) a_{n}\right) \\
\leq & a_{1}\left(|z|+\frac{A-B}{1-B}|z|^{2}\right)
\end{aligned}
$$

which yields (3.7).

Corollary 1. Let a function $f(z)$ belong to $\varphi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$ with $3 \eta \geq \gamma(\eta-\delta-1)$. Then $f(z)$ is included in a disk with its center at origin and radious r given by

$$
r=a_{1}\left(1+\frac{(A-B)(2-\gamma)(3-\eta+\delta)}{2(3-\gamma+\delta)(1-B)}\right),
$$

and $J_{0, z}^{\eta, \gamma, \delta} f(z)$ is included in a disk with its center at the origin and radious R given by

$$
R=\frac{a_{1} \Gamma(3-\gamma+\delta)}{\Gamma(2-\gamma) \Gamma(3-\eta+\delta)}, \quad\left(1+\frac{A-B}{1-B}\right) .
$$

4. Radious of convexity

Theorem 4. Let $f(z)$ belong to $\varphi\left(\mu, \eta, \gamma, \delta, A, B ; z_{0}\right)$. Then $f(z)$ is convex in the disk

$$
\begin{equation*}
|z|<r=r(\eta, \gamma, \delta, A, B)=\inf _{\substack{n \geq 2 \\ n \in \mathbb{N}}}\left(\frac{(1-B) \phi(\eta, \gamma, \delta, n)}{n^{2}(A-B)}\right)^{\frac{1}{n-1}} \tag{4.1}
\end{equation*}
$$

The result is sharp for the function given by

$$
\begin{equation*}
f(z)=\frac{(1-B) \phi(\eta, \gamma, \delta, n) z-(A-B) z^{n}}{\left\{(1-B) \phi(\eta, \gamma, \delta, n)-[(1-\mu)+n \mu](A-B) z_{0}^{n-1}\right\}} . \tag{4.2}
\end{equation*}
$$

Proof. It is sufficient to prove that $\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1$ for $|z|<r(\eta, \gamma$, $\delta, A, B)$. A simple calculation gives us

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{\sum_{n=2}^{\infty} n(n-1) a_{n}|z|^{n-1}}{a_{1}-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}}
$$

Clearly, $\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n}|z|^{n-1} \leq a_{1}-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \tag{4.3}
\end{equation*}
$$

Using $a_{1}=1+\sum_{n=2}^{\infty}\{(1-\mu)+n \mu] z_{0}^{n-1}$ in (4.3), we are led to

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n}\left\{n^{2}|z|^{n-1}-\{(1-\mu)+n \mu] z_{0}^{n-1}\right\} \leq 1 \tag{4.4}
\end{equation*}
$$

By Theorem 1, we have

$$
\sum_{n=2}^{\infty} a_{n}\left\{\frac{(1-B)}{(A-B)} \phi(\eta, \gamma, \delta, n)-[(1-\mu)+n \mu] z_{0}^{n-1}\right\} \leq 1 .
$$

Hence (4.4) will hold, if

$$
n^{2}|z|^{n-1}-[(1-\mu)+n \mu] z_{0}^{n-1} \leq \frac{(1-B)}{(A-B)} \phi(\eta, \gamma, \delta, n)-[(1-\mu)+n \mu] z_{0}^{n-1}
$$

or equivalently

$$
|z|^{n-1} \leq \frac{(1-B)}{n^{2}(A-B)} \phi(\eta, \gamma, \delta, n)
$$

which in turn implies the assertion of the theorem.

Acknowledgements. This work was partially supported by the Basic Science Research Institute Program, Ministry of Education 1997, Profect No. BSRI-97-1440.

References

[1] S. R. Kulkarni and U. H. Naik, A new class of unsvalent functrons with negative coefficients with two fixed points, Indian J. Pure Appl. Math. 27(7) (1996), 681-688.
[2] H Silverman, Unvalent functrons unth negative coefficient, Proc. Amer. Math. Soc. 51 (1975), 109-116
[3] H. M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain operators of fractzonal calculus, J. Math. Anal. Appl. 131 (1988), 412420.
[4] B. A. Uralegaddi and C. Somanatha, Generalazed class of unvvalent functions with two fixed points, Tankang J. Math. (1993), 57-66.

Department of Mathematics
Kyungsung University
Pusan 608-736, Korea
Ermail : oskwon@star.kyungsung.ac.kr

